# Preoperative Inflammation Markers in Predicting Biochemical Recurrence after Robot-assisted Radical Prostatectomy

Mahmut Taha Olcucu, Kaan Karamik, Kayhan Yilmaz, Cagatay Ozsoy, Yasin Aktas and Mutlu Ates

Department of Urology, University of Health Sciences, Antalya Training and Research Hospital, Turkey

## ABSTRACT

**Objective**: To evaluate the importance of preoperative neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR), and neutrophil-to-monocyte ratio (NMR) in prostate cancer patients, who underwent robot-assisted radical prostatectomy (RARP).

Study Design: Observational study.

**Place and Duration of Study**: Urology Department, Antalya Training and Research Hospital, Turkey, between March 2015 and September 2019.

**Methodology:** Four hundred and fifty-four patients underwent RARP were scanned. Clinical characteristics and pathological features of patients were recorded. Patients were excluded, if they had persistent PSA; a history of any autoimmune or inflammatory disease; anti-inflammatory agents use; blood transfusion within 3 months; or a follow-up time shorter than 3 months. Systemic inflammation markers were calculated and correlated with patients' data and biochemical recurrence (BCR). Biochemical recurrence was defined as two repetitive measurements of PSA levels  $\geq 0.2$  ng/mL at 3 months after the radical prostatectomy. Mann-Whitney U-test, Fisher's exact test, and Pearson Chi-square test, ROC curve, Kaplan-Meier survival analyses, and Cox proportional hazard regression model were used as statistical methods.

**Results:** Four hundred and two patients were eligible. The median age at RP was 65.5 (61-69) years and median PSA of the patients was 8.3 (5.76-12.61) ng/ml. Median NLR, LMR, PLR, and NMR were 2 (1.55-2.61), 3.86 (3.14-5), 105.69 (85-134.29), 7.82 (6.25-9.71); and optimal cut-off values were 2.33, 3.75, 106.6, and 8.75, respectively. Low LMR was found as an important predictor of biochemical recurrence (hazard ratio, HR=1.769, 95% confidence interval, CI=1.091 - 2.868, p=0.021). A significant association was found between lower LMR and decreased BCR -free survival (p <0.001).

**Conclusion:** Pretreatment low LMR might be a simple and inexpensive index, which reflects the host systemic immunity and can predict independently BCR after RARP.

**Key Words:** Biochemical recurrence, Lymphocyte-to-monocyte ratio, Neutrophil-to-lymphocyte ratio, Neutrophil-to-monocyte ratio, Platelet-to-lymphocyte ratio, Prostate cancer.

**How to cite this article:** Olcucu MT, Karamik K, Yilmaz K, Ozsoy C, Aktas Y, Ates M. Preoperative Inflammation Markers in Predicting Biochemical Recurrence after Robot-assisted Radical Prostatectomy. *J Coll Physicians Surg Pak* 2020; **30(09)**:921-927.

## INTRODUCTION

Prostate cancer (PCa) is the most common solid cancer type in men.<sup>1</sup> The diagnosis of PCa has increased with screening measurement of prostate-specific antigen (PSA).<sup>2</sup> Radical prostatectomy (RP) is an effective treatment option in prostate cancer.

Correspondence to: Dr. Mahmut Taha Olcucu, Department of Urology, University of Health Sciences, Antalya Training and Research Hospital, Turkey E-mail: matah\_ol@hotmail.com

Received: June 04, 2020; Revised: September 18, 2020; Accepted: September 30, 2020 DOI: https://doi.org/10.29271/jcpsp.2020.09.921

.....

Compared to external beam radiotherapy, RP demonstrates equivalent oncological outcomes and also provides tumor control, accurate staging and elimination of possible PSA sources. However, biochemical recurrence (BCR) may occur in 35% of patients, after which it is usually associated with bad prognosis.<sup>3</sup>

Biochemical recurrence is known as with two repetitive measurements of PSA levels  $\geq 0.2$  ng/mL at 3 months after the RP.<sup>4</sup> Persistent PSA is described as PSA levels  $\geq 0.1$  ng/mL within 6 weeks after the RP; and it is associated with invisible metastases at the time of surgery.<sup>4</sup> Patients who experience BCR after RP, which may require secondary therapy, have poorer oncological outcomes. Several clinical and pathological factors have been proven to be independent predictors of BCR after surgery.<sup>5</sup> Nevertheless, the predictors of BCR remain unclear. Hence, effective prognostic biomarkers are needed for individualised risk assessment and clinical decision-making.

| (H)         - 3200         0.0700         0.0700         0.0400         0.0200         0.0400         0.0200         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400         0.0400 <th>Low (n:262)         Low (n:262)           Efe(e1.e6)         E5(e1.e6)           27.36(25.28-29.4)         8.33(5.92-12)           8.33(5.92-12)         8.33(5.92-12)           8.33(5.92-12)         8.33(5.92-12)           106(63.4)<sup>n</sup>         61(23.3)<sup>n</sup>           114(4)         3(1.1)<sup>n</sup>           3(1.1)<sup>n</sup>         3(1.1)<sup>n</sup>           115(5.7)<sup>n</sup>         15(5.7)<sup>n</sup>           116(63.6)         3(1.1)           3(1.1)<sup>n</sup>         3(1.1)<sup>n</sup>           12(45.6)<sup>n</sup>         11(16.2)           110(138.5)<sup>n</sup>         11(1)           110(1(38.5)<sup>n</sup>         11(15.6)<sup>n</sup>           1177(67.6)         1177(67.6)</th> <th></th> <th>(0.550-0.657)<br/>(0.560-0.657)<br/>(0.526-0.625)</th> <th></th> <th>49 35(37 8<br/>33 64(51 9</th> <th></th> <th>8 62(63 3 - 73 6)</th> <th>27.1</th> <th>20 U - 35 3)</th> <th>85 1/80 7 - 80 7</th> <th></th> | Low (n:262)         Low (n:262)           Efe(e1.e6)         E5(e1.e6)           27.36(25.28-29.4)         8.33(5.92-12)           8.33(5.92-12)         8.33(5.92-12)           8.33(5.92-12)         8.33(5.92-12)           106(63.4) <sup>n</sup> 61(23.3) <sup>n</sup> 114(4)         3(1.1) <sup>n</sup> 3(1.1) <sup>n</sup> 3(1.1) <sup>n</sup> 115(5.7) <sup>n</sup> 15(5.7) <sup>n</sup> 116(63.6)         3(1.1)           3(1.1) <sup>n</sup> 3(1.1) <sup>n</sup> 12(45.6) <sup>n</sup> 11(16.2)           110(138.5) <sup>n</sup> 11(1)           110(1(38.5) <sup>n</sup> 11(15.6) <sup>n</sup> 1177(67.6)         1177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | (0.550-0.657)<br>(0.560-0.657)<br>(0.526-0.625) |                       | 49 35(37 8<br>33 64(51 9 |                       | 8 62(63 3 - 73 6)      | 27.1  | 20 U - 35 3)     | 85 1/80 7 - 80 7   |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------|-----------------------|--------------------------|-----------------------|------------------------|-------|------------------|--------------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | between groups<br>Low (n:262)<br>Low (n:262)<br>befole 169)<br>27.36(561-69)<br>8.33(5.92-12)<br>8.33(5.92-12)<br>8.33(5.92-12)<br>166(63.4) <sup>n</sup><br>61(23.3) <sup>n</sup><br>12(6,6) <sup>n</sup><br>12(4,6) <sup>n</sup><br>3(1.1) <sup>n</sup><br>3(1.1) <sup>n</sup><br>12(4,5) <sup>n</sup><br>12(45.8) <sup>n</sup><br>11(1(38.5) <sup>n</sup><br>12(45.8) <sup>n</sup><br>11(1(5.6) <sup>n</sup><br>1177(67.6)<br>177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | (0.5560- 0.657)<br>(0.526-0.625)                |                       | 53.64(51.9               |                       |                        | 71.12 |                  |                    |       |
| Image: 105         0.000         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004         0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low (n:262)         Low (n:262)           E5(61-69)         65(61-69)           65(61-69)         65(61-69)           8:33(5.92-12)         8:33(5.92-12)           100(33) <sup>a</sup> 114(43.5) <sup>a</sup> 114(43.5) <sup>a</sup> 3(1.1) <sup>a</sup> 12(4.6) <sup>a</sup> 3(1.1) <sup>a</sup> 12(4.6) <sup>a</sup> 3(1.1) <sup>a</sup> 12(4.6) <sup>a</sup> 3(1.1) <sup>a</sup> 12(4.6) <sup>a</sup> 3(1.1) <sup>a</sup> 12(4.5) <sup>a</sup> 12(4.5) <sup>a</sup> 12(4.5) <sup>a</sup> 3(1.1) <sup>a</sup> 12(4.5) <sup>a</sup> 114(43.5) <sup>a</sup> 12(4.5) <sup>a</sup> 3(1.1) <sup>a</sup> 12(4.5) <sup>a</sup> 10(3.8) <sup>a</sup> 12(4.5) <sup>a</sup> 10(3.8) <sup>a</sup> 12(4.5) <sup>a</sup> 115(5.7) <sup>a</sup> 115(5.7) <sup>a</sup> 110(3.8) <sup>b</sup> 110(3.8) <sup>b</sup> 3(1.1)           120(45.8) <sup>a</sup> 10(1.3) <sup>b</sup> 110(1(38.5) <sup>a</sup> 110(1(38.5) <sup>a</sup> 110(1(5.6) <sup>a</sup> 1177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | (0.560- 0.657)<br>(0.526-0.625)                 |                       | 33 64(51 9               |                       | (a.a. a.a.)            |       | (0.00 - 0.02)    | 2.00 - 2.00/1.00   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low (n:262)         Low (n:262)           Low (n:262)         65(61-69)           65(61-69)         65(61-69)           8:33(5.92-12)         8:33(5.92-12)           106(63.4)"         65(61-69)           12(4.6)"         12(4.6)"           3(1.1)"         3(1.1)"           3(1.1)"         3(1.1)"           12(4.6)"         12(4.6)"           12(4.6)"         3(1.1)"           35(13.4)"         10(3.8)"           10(3.8)"         16(7.2)           15(5.7)"         10(13.8)"           101(3.8)"         3(1.1)           101(3.8)"         10(3.8)"           114(70.2)         75(28.6)           3(1.1)         3(1.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9   | (0.526-0.625)                                   |                       |                          |                       | 9.69(54.1 - 65.1)      | 27.2  | (20.9 - 34.3)    | 87.4(82.3 - 91.5   | ()    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low (n:262)         Low (n:262)           Low (n:262)         65(61-69)           65(61-69)         27.36(25 28-29.4)           8.33(5.92-12)         8.33(5.92-12)           106(63.4)"         65(61-69)           122(36.6)         12(4.6)"           3(1.1)"         3(1.1)"           3(1.1)"         3(1.1)"           114(43.5)"         88(33.6)"           12(4.6)"         16(5.7)"           115(5.7)"         16(7.2)           10(3.8)"         10(13.8)"           10(3.8)"         10(13.8)"           10(3.8)         3(1.1)           10(3.8)         10(1.3)           115(5.7)"         10(1.38.5)"           10(1.38.5)"         10(1.38.5)"           10(1.38.5)"         10(1.50)"           110(1.38.5)"         110(1.38.5)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                 |                       | 33.64(51.9               |                       | 4.46(48.9 - 60.0)      | 24.9  | (19.0 - 31.5)    | 86.3(80.9 - 90.7   | 5     |
| Interventional interventinterventinterventional interventional interventional interventiona                                                                                                                                                                                                               | between groups<br>Low (n:262)<br>65(61-69)<br>27.36(25.28-29.4)<br>8.33(5.92-12)<br>8.33(5.92-12)<br>166(63.4)"<br>61(23.3)"<br>16(6(53.4)"<br>12(4.6)"<br>12(4.6)"<br>12(4.6)"<br>12(4.6)"<br>12(5.7)"<br>12(3.8)"<br>12(3.8)"<br>12(3.8)"<br>12(45.8)"<br>12(145.8)"<br>11(1(3.8).5)"<br>12(145.8)"<br>11(1(5.7)"<br>11(1(5.6)"<br>1177(67.6)<br>1177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | (0.459-0.559)                                   |                       | 38.83(57.3               |                       | 7.85(32.6 - 43.4)      | 20.8  | (16.0 - 26.3)    | 83.7(76.7 - 89.3   | ()    |
| Image:                                                                                                                                                                                                    | Low (n:262)           65(61-69)           57(5-28-29.4)           8.33(5-92-12)           8.33(5-92-12)           166(63.4)"           61(23.3)"           20(7.6)"           12(4.6)"           3(1.1)"           3(1.1)"           3(1.1)"           12(4.6)"           12(4.6)"           3(1.1)"           3(1.1)"           3(1.1)"           12(4.6)"           12(4.6)"           3(1.1)"           3(1.1)"           12(4.6)"           12(4.1)           15(5.7)"           16(62.8)"           10(3.8)"           10(3.8)"           10(3.8)"           10(3.8)"           10(3.8)"           10(3.8)"           10(3.8)"           10(3.8)"           114(70.2)           7(1.1)           1101(38.5)"           1101(38.5)"           1101(38.5)"           1101(38.5)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                 |                       |                          |                       |                        |       |                  |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low (n:262)           55(61-69)           65(61-69)           65(61-69)           8.33(5.92-12)           166(63.4)"           61(23.3)"           20(7.6)"           12(4.6)"           3(1.1)"           3(1.1)"           55(3.6)"           12(4.6)"           3(1.1)"           12(4.6)"           3(1.1)"           12(4.6)"           3(1.1)"           12(4.6)"           3(1.1)"           3(1.1)"           12(4.6)"           12(4.2)"           15(5.7)"           15(5.7)"           10(3.8)"           10(3.8)"           10(3.8)"           114(70.2)           75(28.6)           3(1.1)           101(38.5)"           1101(38.5)"           1101(38.5)"           1101(38.5)"           1101(38.5)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                 | PLR                   |                          |                       | LMR                    |       |                  | NMR                |       |
| Image: 100         0.0661-00         0.0661-00         0.0661-00         0.0660-00         0.0660-00         0.0660-00         0.0660-00         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600         0.0600          0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 65(61-69)         65(61-69)           27:36(25.28.29.4)         8.33(5.92-12)           166(63.4)"         61(23.3)"           166(53.4)"         61(23.3)"           12(4.6)"         3(1.1)"           3(1.1)"         3(1.1)"           12(4.6)"         3(1.1)"           12(4.6)"         3(1.1)"           12(4.6)"         3(1.1)"           12(4.6)"         3(1.1)"           12(4.6)"         3(1.1)"           12(4.6)"         3(1.1)"           114(43.5)"         3(1.1)"           12(13.8)"         10(3.8)"           15(5.7)"         10(3.8)"           15(5.7)"         10(3.8)"           10(3.8)"         10(1.3)           114(70.2)         75(28.6)           3(1.1)         3(1.1)           115(5.7)"         110(1(38.5)"           110(1(38.5)"         110(1(38.5)"           110(1(38.5)"         110(1(38.5)"           110(1(38.5)"         110(1(58.5)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Low (n:205)                                     | High (n:197)          | ٩                        | Low (n:180)           | High (n:222)           | ٩     | Low (n:255)      | High (n:147)       | ٩     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27:36(25.28-29.4)<br>8.33(5.92-12)<br>8.33(5.92-12)<br>61(23.3)"<br>20(7.6)"<br>12(4.6)"<br>3(1.1)"<br>3(1.1)"<br>3(1.1)"<br>35(13.4)"<br>16(5.7)"<br>15(5.7)"<br>15(5.7)"<br>15(5.7)"<br>10(3.8)"<br>15(5.7)"<br>3(1.1)<br>10(3.8)"<br>15(5.7)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 65(61-69)                                       | 66(61-69)             | 0.417                    | 66(62-70)             | 65(60-68)              | 0.002 | 66(61-69)        | 65(60-69)          | 0.422 |
| Image: 1.2.3.1.3.3.3.         0.317         2.206.5.1.3.3.3.         0.317         2.206.5.1.3.3.3.         0.317         2.206.5.1.3.3.3.         0.317         2.206.5.3.3.3.3.         0.206.5.3.3.3.3.         0.206.5.3.3.3.3.3.         0.206.5.3.3.3.3.3.         2.206.5.3.3.3.3.3.         2.206.5.3.3.3.3.3.         2.206.5.3.3.3.3.3.         2.206.5.3.3.3.3.3.         2.206.5.3.3.3.3.         2.206.5.3.3.3.3.3.         2.206.5.3.3.3.3.3.         2.206.5.3.3.3.3.         2.206.5.3.3.3.3.3.         2.206.5.3.3.3.3.3.3.         2.206.5.3.3.3.3.3.3.3.3.3.         2.206.5.3.3.3.3.3.3.3.3.3.3.         2.206.5.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.33(5.92-12)       166(63.4) <sup>n</sup> 61(23.3) <sup>n</sup> 61(23.3) <sup>n</sup> 12(4.6) <sup>n</sup> 3(1.1) <sup>n</sup> 3(1.1) <sup>n</sup> 114(43.5) <sup>n</sup> 88(33.6) <sup>n</sup> 35(13.4) <sup>n</sup> 103.8) <sup>n</sup> 15(5.7) <sup>n</sup> 15(5.7) <sup>n</sup> 11(1)       10(13.8) <sup>n</sup> 11(1)       11(1)       11(1)       11(1)       11(1)       11(1)       11(1)       11(1)       117(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 27.43(24.88-29.39)                              | 27.18(24.91-30.07)    | 0.936                    | 27.33(24.44-29.9)     | 27.42(25.25-29.4)      | 0.610 | 27.18(24.8-29.4) | 27.61(25.04-30.12) | 0.505 |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 166(63.4)"       166(63.4)"       61(23.3)"       20(7.6)"       12(4.6)"       3(1.1)"       35(13.4)"       16(5.7)"       10(3.8)"       10(3.8)"       10(3.8)"       10(3.8)"       10(3.8)"       10(3.8)"       10(3.8)"       10(3.8)"       10(3.8)"       10(3.8)"       10(3.8)"       10(3.8)"       10(3.8)"       10(3.8)"       10(1,38.5)"       11(15.6)"       117(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 8.28(6-12)                                      | 8.53(5.63-13.06)      | 0.399                    | 8.55(5.73-13.14)      | 8.23(5.77-12)          | 0.551 | 8.46(5.83-12.66) | 8.05(5.63-12.61)   | 0.973 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 166(63.4)"         166(63.4)"           61(23.3)"         61(23.3)"           20(7.6)"         12(4.6)"           3(1.1)"         3(1.1)"           35(13.4)"         35(13.4)"           10(3.8)"         10(3.8)"           15(5.7)"         15(5.7)"           15(5.7)"         10(3.8)"           10(3.8)"         10(3.8)"           11(4.70.2)         75(28.6)           3(1.1)         110(1(38.5)"           110(1(35.5)"         110(1(35.5)"           110(1(35.5)"         110(1(35.5)"           110(1(35.5)"         110(1(35.5)"           110(1(35.5)"         110(1(35.5)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                 |                       |                          |                       |                        |       |                  |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61(23.3)"     61(23.3)"       20(7.6)"     12(4.6)"       12(4.6)"     3(1.1)"       3(1.1)"     3(1.1)"       114(43.5)"     88(33.6)"       88(33.6)"     35(13.4)"       10(3.8)"     10(3.8)"       15(5.7)"     75(28.6)       75(28.6)     3(1.1)       3(1.1)     120(45.8)"       1101(38.5)"     1101(38.5)"       1101(38.5)"     117(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 127(62)                                         | 112(56.9)             | 0.183                    | 97(53.9) <sup>a</sup> | 142(64) <sup>b</sup>   | 0.010 | 146(57.3)        | 93(63.3)           | 0.126 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20(7.6)"<br>12(4.6)"<br>3(1.1)"<br>3(1.1)"<br>114(43.5)"<br>88(33.6)"<br>35(13.4)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>15(5.7)"<br>15(5.7)"<br>15(6)<br>35(1.1)<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)")<br>112(0(45.8)"<br>112(0(45.8)"<br>112(0(45.8)")<br>112(0(45.8)"<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(0(45.8)")<br>112(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 47(22.9)                                        | 48(24.4)              |                          | 45(25) <sup>a</sup>   | 50(22.5) <sup>a</sup>  |       | 66(25.9)         | 29(19.7)           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12(4.6)"<br>3(1.1)"<br>3(1.1)"<br>114(43.5)"<br>88(33.6)"<br>88(33.6)"<br>35(13.4)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>10(3.8)"<br>11(5.7)"<br>11(1,6)"<br>11(1,6)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 18(8.8)                                         | 12(6.1)               |                          | 11(6.1) <sup>a</sup>  | 19(8.6) <sup>a</sup>   |       | 23(9)            | 7(4.8)             |       |
| 3(1)%         (0)7%         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         2(1)         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3(1.1) <sup>a</sup><br>114(43.5) <sup>a</sup><br>88(33.6) <sup>a</sup><br>35(13.4) <sup>a</sup><br>10(3.8) <sup>a</sup><br>10(3.8) <sup>a</sup><br>10(3.8) <sup>a</sup><br>10(3.8) <sup>a</sup><br>10(3.8) <sup>a</sup><br>10(3.8) <sup>a</sup><br>10(3.8) <sup>a</sup><br>75(28.6)<br>3(1.1)<br>3(1.1)<br>3(1.1)<br>110(45.8) <sup>a</sup><br>101(38.5) <sup>a</sup><br>110(45.8) <sup>a</sup><br>110(45. |       | 11(5.4)                                         | 23(11.7)              |                          | 24(13.3) <sup>a</sup> | 10(4.5) <sup>b</sup>   |       | 17(6.7)          | 17(11.6)           |       |
| alia alia alia alia alia alia alia alia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 114(43.5) <sup>a</sup><br>88(33.6) <sup>a</sup><br>35(13.4) <sup>a</sup><br>10(3.8) <sup>a</sup><br>10(3.8) <sup>a</sup><br>15(5.7) <sup>a</sup><br>15(5.7) <sup>a</sup><br>15(28.6)<br>3(1.1)<br>3(1.1)<br>3(1.1)<br>101(38.5) <sup>a</sup><br>101(38.5) <sup>a</sup><br>101(38.5) <sup>a</sup><br>117(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 2(1)                                            | 2(1)                  |                          | 3(1.7) <sup>a</sup>   | 1(0.5) <sup>a</sup>    |       | 3(1.2)           | 1(0.7)             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114(43.5) <sup>a</sup> 88(33.6) <sup>a</sup> 35(13.4) <sup>a</sup> 10(3.8) <sup>a</sup> 10(3.8) <sup>a</sup> 15(5.7) <sup>a</sup> 15(5.7) <sup>a</sup> 15(5.7) <sup>a</sup> 15(5.7) <sup>a</sup> 15(5.7) <sup>a</sup> 15(5.7) <sup>a</sup> 10(3.8) <sup>a</sup> 115(5.7) <sup>a</sup> 15(5.7) <sup>a</sup> 15(5.7) <sup>a</sup> 12(1.1)       k       120(45.8) <sup>a</sup> 41(15.6) <sup>a</sup> 177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                 |                       |                          |                       |                        |       |                  |                    |       |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88(33.6)"     88(33.6)"       35(13.4)"     10(3.8)"       10(3.8)"     10(3.8)"       15(5.7)"     15(5.7)"       15(5.7)"     3(1.1)       75(28.6)     3(1.1)       3(1.1)     120(45.8)"       k     101(38.5)"       41(15.6)"     177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 82(40) <sup>a</sup>                             | 78(39.6) <sup>a</sup> | 0.011                    | 69(38.3)              | 91(41)                 | 0.123 | 96(37.6)         | 64(43.5)           | 0.199 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35(13.4)°<br>10(3.8)°<br>15(5.7)°<br>15(5.7)°<br>15(5.7)°<br>15(5.7)°<br>12(28.6)<br>3(1.1)<br>3(1.1)<br>k<br>120(45.8)°<br>41(15.6)°<br>177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 80(39) <sup>a</sup>                             | 50(25.4) <sup>b</sup> |                          | 50(27.8)              | 80(36)                 |       | 89(34.9)         | 41(27.9)           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10(3.8) <sup>a</sup> 15(5.7) <sup>a</sup> 15(5.7) <sup>a</sup> 15(5.7) <sup>a</sup> 15(5.7) <sup>a</sup> 126(28.6)       3(1.1)       3(1.1)       4(70.2)       120(45.8) <sup>a</sup> 41(15.6) <sup>a</sup> 177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 23(11.2) <sup>a</sup>                           | 39(19.8) <sup>b</sup> |                          | 32(17.8)              | 30(13.5)               |       | 41(16.1)         | 21(14.3)           |       |
| 15(57)*         11(7.3)*         11(5.4)*         15(7.6)*         15(8.6)*         16(8.1)*         16(8.1)*         16(8.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*         18(7.1)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15(5.7) <sup>a</sup> 184(70.2)       75(28.6)       3(1.1)       3(1.1)       120(45.8) <sup>a</sup> 41(15.6) <sup>a</sup> 177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | $9(4.4)^{a}$                                    | 15(7.6) <sup>a</sup>  |                          | 13(7.2)               | 11(5)                  |       | 11(4.3)          | 13(8.8)            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 184(70.2)       184(70.2)       75(28.6)       3(1.1)       3(1.1)       120(45.8) <sup>a</sup> 41(15.6) <sup>a</sup> 177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | $11(5.4)^{a}$                                   | 15(7.6) <sup>a</sup>  |                          | 16(8.9)               | 10(4.5)                |       | 18(7.1)          | 8(5.4)             |       |
| 104(702)         86(61.4)         0.160         143(60.5)         127(64.5)         0.52         135(70.7)         0.241         167(65.5)         103(70.1)           75(28.6)         53(37.9)         10         10.7)         10         10.7)         10         10.7         142(86)         143(66.5)         103(70.1)           3(1.1)         1(0.7)         10         0.023         68(3.45)         68(3.45)         10.7         2(1.1)         2(0.9)         12         42(28.6)         12(4.6)         42(28.6)         12(4.6)         42(28.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6)         12(4.6) </td <td>184(70.2)       75(28.6)       3(1.1)       3(1.1)       120(45.8)<sup>a</sup>       41(15.6)<sup>a</sup>       41(15.6)<sup>a</sup></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 184(70.2)       75(28.6)       3(1.1)       3(1.1)       120(45.8) <sup>a</sup> 41(15.6) <sup>a</sup> 41(15.6) <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                 |                       |                          |                       |                        |       |                  |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75(28.6)<br>3(1.1)<br>3(1.1)<br>hk 120(45.8) <sup>a</sup><br>41(15.6) <sup>a</sup><br>41(15.6) <sup>a</sup><br>177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 143(69.8)                                       | 127(64.5)             | 0.525                    | 113(62.8)             | 157(70.7)              | 0.241 | 167(65.5)        | 103(70.1)          | 0.502 |
| $3(1.1)$ $1(0.7)$ $2(1)$ $2(1)$ $2(1)$ $2(1)$ $2(1,1)$ $2(0.9)$ $2(1.4)$ $2(1.4)$ $120(45.8)^{\circ}$ $48(34.3)^{\circ}$ $0.07$ $96(46.8)^{\circ}$ $72(36.5)^{\circ}$ $0.013$ $61(33.9)^{\circ}$ $107(48.2)^{\circ}$ $0.001$ $107(48.2)^{\circ}$ $51(40.7)^{\circ}$ $56(44.9)^{\circ}$ $120(13.6)^{\circ}$ $57(40.7)^{\circ}$ $81(39.5)^{\circ}$ $77(39.1)^{\circ}$ $77(30.1)^{\circ}$ $86(38.7)^{\circ}$ $107(48.2)^{\circ}$ $107(48.2)^{\circ}$ $56(44.9)^{\circ}$ $10(138.5)^{\circ}$ $57(40.7)^{\circ}$ $81(39.5)^{\circ}$ $77(39.1)^{\circ}$ $47(26.1)^{\circ}$ $86(3.7)^{\circ}$ $86(44.9)^{\circ}$ $86(44.9)^{\circ}$ $10(138.5)^{\circ}$ $57(40.7)^{\circ}$ $81(3.5)^{\circ}$ $17(67.6)^{\circ}$ $86(3.7)^{\circ}$ $86(3.7)^{\circ}$ $86(44.9)^{\circ}$ </td <td>3(1.1)<br/>3(1.1)<br/>120(45.8)<sup>a</sup><br/>41(138.5)<sup>a</sup><br/>41(15.6)<sup>a</sup><br/>177(67.6)</td> <td></td> <td>60(29.3)</td> <td>68(34.5)</td> <td></td> <td>65(36.1)</td> <td>63(28.4)</td> <td></td> <td>86(33.7)</td> <td>42(28.6)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3(1.1)<br>3(1.1)<br>120(45.8) <sup>a</sup><br>41(138.5) <sup>a</sup><br>41(15.6) <sup>a</sup><br>177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 60(29.3)                                        | 68(34.5)              |                          | 65(36.1)              | 63(28.4)               |       | 86(33.7)         | 42(28.6)           |       |
| 120(45 B)*48(34.3)*0.02796(46 B)*72(36.5)*0.01361(33.9)*107(48.2)*0.001102(40)66(44.9)101(38.5)*57(40.7)*57(40.7)*81(39.5)*77(39.1)*72(40)*86(38.7)*90.01107(42)51(34.7)101(38.5)*57(40.7)*35(25)*781(39.5)*77(39.1)*48(24.4)*72(40)*86(38.7)*96(46)51(34.7)117(67.6)84(60)0.130135(65.9)126(64)0.691109(60.6)152(68.5)0.008166(65.1)95(64.6)177(67.6)84(60)0.130135(65.9)126(64)0.691109(60.6)152(68.5)0.008166(65.1)95(64.6)177(67.6)84(60)0.130133(65.9)126(64)0.691109(60.6)152(68.5)0.008166(65.1)95(64.6)177(7.19)85(32.4)86(37.9)0.051152(68.5)0.01880(31.4)23(35.4)95(64.6)196(76)113(80.7)0.051126(64.1)71(39.4)70(31.5)29(34.9)52(35.4)95(35.4)199(76)113(80.7)0.051153(77.7)0.50742(23.3)38(17.1)0.12657(22.4)23(15.6)199(76)113(80.7)0.503153(77.7)0.5470.54733(17.5)23(15.6)111(75.5)199(76)113(80.7)0.503153(77.7)0.5470.54733(14.4)0.76833(15.6)199(76)113(80.7)0.503153(77.7)0.5470.54733(15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120(45.8) <sup>4</sup><br>k 101(38.5) <sup>4</sup><br>41(15.6) <sup>4</sup><br>177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 2(1)                                            | 2(1)                  |                          | 2(1.1)                | 2(0.9)                 |       | 2(0.8)           | 2(1.4)             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120(45.8) <sup>4</sup><br>k 101(38.5) <sup>6</sup><br>41(15.6) <sup>6</sup><br>177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                 |                       |                          |                       |                        |       |                  |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .k 101(38.5) <sup>4</sup><br>41(15.6) <sup>4</sup><br>177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 96(46.8) <sup>a</sup>                           | 72(36.5) <sup>b</sup> | 0.013                    | 61(33.9) <sup>a</sup> | 107(48.2) <sup>b</sup> | 0.001 | 102(40)          | 66(44.9)           | 0.356 |
| 41(15) <sup>6</sup> 35(25) <sup>6</sup> 28(13.7) <sup>4</sup> 48(24.4) <sup>6</sup> 47(26.1) <sup>6</sup> 29(13.1) <sup>6</sup> 46(16)         30(20.4)           177(67.6)         84(60)         0.130         135(65.9)         126(64)         0.691         109(60.6)         152(68.5)         0.098         166(65.1)         95(64.6)           85(32.4)         56(40)         0.130         135(65.9)         126(64)         0.691         109(60.6)         152(68.5)         0.098         166(65.1)         95(64.6)           85(32.4)         56(40)         0.130         135(65.9)         126(64)         0.691         109(60.6)         152(32.4)         96(64.5)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(64.6)         96(74.6) <t< td=""><td>41(15.6)<sup>a</sup><br/>177(67.6)</td><td></td><td>81(39.5)<sup>a</sup></td><td>77(39.1)<sup>a</sup></td><td></td><td>72(40)<sup>a</sup></td><td>86(38.7)<sup>a</sup></td><td></td><td>107(42)</td><td>51(34.7)</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41(15.6) <sup>a</sup><br>177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 81(39.5) <sup>a</sup>                           | 77(39.1) <sup>a</sup> |                          | 72(40) <sup>a</sup>   | 86(38.7) <sup>a</sup>  |       | 107(42)          | 51(34.7)           |       |
| 177(67.6)84(60)0.130135(65.9)126(64)0.691109(60.6)152(68.5)0.098166(65.1)95(64.6)85(32.4)56(40) $\sim$ 70(34.1)71(36)71(36) $\sim$ 71(39.4)70(31.5)88(34.9)52(35.4) <b>on</b> 74(28.2)53(37.9)0.05162(30.2)65(33)0.57568(37.8)59(26.6)0.01880(31.4)47(32. <b>sion</b> 47(17.9)33(23.6)0.18438(18.5)42(21.3)0.50042(23.3)38(17.1)0.12657(22.4)23(15.6) <b>sion</b> 47(17.9)33(23.6)0.035159(77.6)153(77.7)0.947144(80)168(75.7)0.340201(78.8)111(75.5) <b>ion</b> 40(5.3)18(12.9)0.50331(15.1)27(13.7)0.67126(14.4)32(14.4)0.99245(17.6)13(8.8) <b>ion</b> 40(5.3)18(12.9)0.50331(15.1)27(13.7)0.67126(14.4)32(14.4)0.99245(17.6)13(8.8) <b>ion</b> 56(21.4)7(5)0.446(2.9)10(5.1)0.71057(3.17)44(19.8)0.00763(2.7)38(25.9) <b>ion</b> 56(21.4)7(5)18(12.9)0.446(2.9)10(5.1)0.71057(3.17)0.340201(76.8)111(75.5) <b>ion</b> 56(21.4)7(5)18(17.9)0.71027(13.7)0.4126(14.4)32(14.4)0.92245(17.6)13(8.8) <b>ion</b> 56(21.4)7(5)10(5.1)0.71057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 28(13.7) <sup>a</sup>                           | 48(24.4) <sup>b</sup> |                          | 47(26.1) <sup>a</sup> | 29(13.1) <sup>b</sup>  |       | 46(18)           | 30(20.4)           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 177(67.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                 |                       |                          |                       |                        |       |                  |                    |       |
| B5(324)         56(40)         70(341)         71(36)         71(36)         71(36)         71(36)         70(315)         88(34.9)         82(3.5)         52(35.4)           on         74(282)         53(379)         0.051         62(302)         65(33)         0.575         68(37.8)         59(26.6)         0.018         80(31.4)         77(32.           sion         47(179)         33(23.6)         0.051         62(33)         0.500         42(23.3)         38(17.1         0.126         57(22.4)         23(15.6)           sion         47(179)         33(23.6)         0.184         38(17.1)         0.367         42(23.3)         38(17.1         0.126         57(22.4)         23(15.6)           sion         40(15.3)         18(12.9)         0.305         159(77.6)         153(77.7)         0.347         144(80)         168(75.7)         0.340         201(7.6)         111(75.5)           in         40(15.3)         18(12.9)         0.305         153(77.7)         0.347         0.3(1.4)         0.31(5.1)         111(75.5)           in         40(15.3)         18(12.9)         0.305         153(77.7)         0.341         23(14.4)         0.346         33(15.6)           in         56(21.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.130 | 135(65.9)                                       | 126(64)               | 0.691                    | 109(60.6)             | 152(68.5)              | 0.098 | 166(65.1)        | 95(64.6)           | 0.924 |
| on $74(282)$ $53(379)$ $0.051$ $62(302)$ $65(33)$ $0.575$ $68(378)$ $59(266)$ $0.018$ $80(31.4)$ $47(32.5)$ sion $47(179)$ $33(23.6)$ $0.184$ $38(18.5)$ $42(21.3)$ $0.500$ $42(23.3)$ $38(17.1)$ $0.126$ $57(22.4)$ $23(156)$ sion $199(76)$ $113(60.7)$ $0.305$ $159(77.6)$ $153(77.7)$ $0.947$ $144(80)$ $168(75.7)$ $0.340$ $27(22.4)$ $23(156)$ in $40(15.3)$ $18(12.9)$ $0.305$ $159(77.6)$ $153(77.7)$ $0.947$ $144(80)$ $168(75.7)$ $0.340$ $201(7.8)$ $111(75.5)$ in $40(15.3)$ $18(12.9)$ $0.503$ $31(15.1)$ $0.710$ $26(14.4)$ $32(14.4)$ $0.927$ $45(17.6)$ $13(8.8)$ in $56(21.4)$ $45(32.1)$ $0.019$ $53(25.9)$ $48(24.4)$ $0.710$ $57(3.17)$ $0.907$ $63(2.7)$ $38(25.9)$ in $56(21.4)$ $7(5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85(32.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 70(34.1)                                        | 71(36)                |                          | 71(39.4)              | 70(31.5)               |       | 89(34.9)         | 52(35.4)           |       |
| sion $47(179)$ $33(2.36)$ $0.184$ $38(18.5)$ $42(21.3)$ $0.500$ $42(23.3)$ $38(17.1)$ $0.2126$ $57(22.4)$ $23(156)$ $199(76)$ $113(60.7)$ $0.305$ $159(77.6)$ $153(77.7)$ $0.947$ $144(80)$ $168(75.7)$ $0.340$ $201(78.8)$ $111(75.5)$ in $40(15.3)$ $18(12.9)$ $0.503$ $31(15.1)$ $27(13.7)$ $0.671$ $26(14.4)$ $32(14.4)$ $0.907$ $45(17.6)$ $13(8.8)$ $9(16,3)$ $18(12.9)$ $0.503$ $31(15.1)$ $27(13.7)$ $0.671$ $26(14.4)$ $32(14.4)$ $0.922$ $45(17.6)$ $13(8.8)$ $9(2,14)$ $45(22.1)$ $0.019$ $53(25.9)$ $48(24.4)$ $0.710$ $57(3.17)$ $44(19.8)$ $0.007$ $63(2.7)$ $38(25.9)$ $9(3.4)$ $7(5)$ $0.44$ $6(2.9)$ $10(5.1)$ $0.710$ $8(3.6)$ $9(3.7)$ $93(2.7)$ $93(2.9)$ $9(3.4)$ $7(5)$ $0.44$ $6(2.9)$ $10(5.1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74(28.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 62(30.2)                                        | 65(33)                | 0.575                    | 68(37.8)              | 59(26.6)               | 0.018 | 80(31.4)         | 47(32.             | 0.865 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47(17.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 38(18.5)                                        | 42(21.3)              | 0.500                    | 42(23.3)              | 38(17.1                | 0.126 | 57(22.4)         | 23(15.6)           | 0.112 |
| ion         40(15.3)         18(12.9)         0.503         31(15.1)         27(13.7)         0.671         26(14.4)         32(14.4)         0.992         45(17.6)         13(8.8)           jin         56(21.4)         45(32.1)         0.019         53(25.9)         48(24.4)         0.710         57(31.7)         44(19.8)         0.007         63(24.7)         38(25.9)           9(3.4)         7(5)         0.444         6(2.9)         10(5.1)         0.270         8(3.6)         64(4.1)         6(3.6)         64(1.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 199(76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 159(77.6)                                       | 153(77.7)             | 0.947                    | 144(80)               | 168(75.7)              | 0.340 | 201(78.8)        | 111(75.5)          | 0.517 |
| jin         56(214)         45(32.1)         0.019         53(25.9)         48(24.4)         0.710         57(31.7)         44(19.8)         0.007         63(24.7)         38(25.9)           9(3.4)         7(5)         0.444         6(2.9)         10(5.1)         0.270         8(4.4)         8(3.6)         0.643         6(4.1)         6(4.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40(15.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 31(15.1)                                        | 27(13.7)              | 0.671                    | 26(14.4)              | 32(14.4)               | 0.992 | 45(17.6)         | 13(8.8)            | 0.017 |
| 9(3.4)         7(5)         0.444         6(2.9)         10(5.1)         0.270         8(4.4)         8(3.6)         0.668         10(3.9)         6(4.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56(21.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 53(25.9)                                        | 48(24.4)              | 0.710                    | 57(31.7)              | 44(19.8)               | 0.007 | 63(24.7)         | 38(25.9)           | 0.769 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lymph node invasion 9(3.4) 7(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.444 | 6(2.9)                                          | 10(5.1)               | 0.270                    | 8(4.4)                | 8(3.6)                 | 0.668 | 10(3.9)          | 6(4.1)             | 0.937 |

Tumor-associated inflammation is considered as a key factor for cancer development and progression.<sup>6</sup> The ratio of neutrophil-to-lymphocyte (NLR), neutrophil-to-monocyte (NMR), lymphocyte-to-monocyte (LMR), platelet-to-lymphocyte (PLR) can be calculated from complete blood counts (CBC); and these have been suggested as an emerging marker of systemic inflammation. The body's response to inflammation has a critical role in patients with malignancies.<sup>7,8</sup> Consequently, the NLR has been evaluated for predicting BCR in PCa; however, results of respective studies are controversial.<sup>9-11</sup>

In cancer patients, the inflammation markers are increasingly important in terms of prognosis. Moreover, the inflammation markers are an accessible and inexpensive clinical parameters in daily practice.

The aim of the present study was to evaluate the inflammation markers in predicting biochemical recurrence in prostate cancer patients who underwent robot-assisted RP (RARP).

## **METHODOLOGY**

This observational study was conducted at the Urology Department, Antalya Training and Research Hospital. After Local Ethics Committee approval, the data of 454 patients who had underwent robot-assisted radical prostatectomy without neo-adjuvant treatment between March 2015 and September 2019 at the Urology Department of Antalya Training and Research Hospital were retrospectively identified. Patients were excluded, if they had PSA levels  $\geq 0.1$ ng/mL within 6 weeks after RP (persistent PSA); a history of any autoimmune or inflammatory disease; anti-inflammatory drug use; blood transfusion within 3 months; or a follow-up time shorter than 3 months.

Da Vinci Xi Robotic System® (Intuitive Surgical System Technologies, Sunnyvale, CA, USA) was used to perform surgeries. Patients with a lymph node metastasis risk of above 5% according to the Briganti nomogram had extended lymph node dissection. Clinical characteristics and pathological features of patients including age, preoperative PSA, biopsy of International Society of Urological Pathology (ISUP) grade, clinical T stage, postoperative ISUP grade, pathological T stage, surgical margin (SM), lymphovascular invasion (LVI), extraprostatic extension (EPE), presence of perineural invasion (PNI), seminal vesicle invasion (SVI) and presence of lymph node metastasis were noted. The CBCs was obtained 3-10 days before surgery. The NLR, PLR, LMR and NMR were computed and noted. After the RARP, the patients were followed up postoperatively with PSA. BCR presence was defined as two repetitive measurements of PSA levels  $\geq 0.2$  ng/mL at 3 months after the RP. BCR-free survival (BCRFS) was calculated from the time of RP to BCR.

SPSS (version 23.0, IBM Corp., Armonk, NY) and MedCalc Statistical Software (Unlincenced copy-free trial, version 19.3.1, MedCalc Software Ltd, Ostend, Belgium) were used for statistical analysis. Qualitative data were given as frequency (%), while quantitative as median (IQR). The normality of patients' data was controlled by the Shapiro-Wilk test. Mann-Whitney U-test was used to determine the differences between the groups. The Fisher's exact test and Pearson Chi-square test were used for categorical variables. The receiver operating characteristic (ROC) curve analysis was applied to evaluate the predictive performance of CBC parameters for BCR. The area under the curve (AUC), sensitivity, specificity, negative and positive predictive values (NPV-PPV) were computed and found with 95% confidence intervals. Youden's index was used to find the optimal cutoff points. The Kaplan-Meier analysis was used to demonstrate survival curves; and the log-rank test was used to evaluate the differences. Univariate and multivariate analyses of independent predictors of BCR was performed with a Cox proportional hazard regression model. The variables which showed significant association with BCR in the univariate analyses were further tested in a backward stepwise multivariate model. Hazard ratio (HR), with corresponding 95% confidence intervals (95% CIs), was reported. P < 0.05 was accepted as significant.

## RESULTS

Four hundred and two patients were found eligible for the study. The entire cohort aged 65.5 (61-69) years on median (IQR) and median PSA of the patients were 8.3 (5.76-12.61) ng/ml. Median NLR, LMR, PLR, and NMR were 2 (1.55-2.61), 3.86 (3.14-5), 105.69 (85-134.29), and 7.82 (6.25-9.71), respectively. After RARP, patients were followed-up with a median of 19 months.

Based on the ROC curve and Youden's index, the potential NLR cut-off point was 2.33 for BCR (AUC=0.577). The value of 3.75 for LMR (AUC=0.609) and 106.5 for PLR (AUC=0.576) were found to be a cut-off point. Finally, a cut-off point of 8.75 was calculated for NMR (AUC=0.509). Table I reports the sensitivity, specificity, PPV, and NPV for study parameters to predict BCR. According to cut-off points, low and high groups were created (Table I). High-NLR group had a higher biopsy and postoperative ISUP grade and D'Amico risk classification than those in the low-NLR group (p=0.004, p=0.021, and p=0.027, respectively). Furthermore, patients with NLR >2.33 were more likely to harbour positive SMs (p=0.019). The high-PLR group was correlated with higher postoperative ISUP grade and D'Amico

(p=0.011 and p=0.013). The high-LMR group was slightly younger than the low-LMR group (p=0.002). D'Amico risk classification and biopsy ISUP grade of the low-LMR group were significantly higher than the high-LMR group. Additionally, the low-LMR group had more EPE and positive SM than the high-LMR group (p=0.018 and p=0.007).

## Table II: Comparison of patients' characteristics between BCR groups and demonstration of univariate and backward stepwise multivariate Cox regression analysis for determining the risk factors associated with biochemical reccurence.

|                                             | BCR                    |                       |                       |          |
|---------------------------------------------|------------------------|-----------------------|-----------------------|----------|
| /ariables                                   | No (n:325)             | Yes (n:77)            |                       | <b>p</b> |
| ge (years)                                  | 65(61-69)              | 66(61-70)             |                       | 0.700    |
| BMI (kg/m²)                                 | 27.22(24.84-29.41)     | 27.68(25.1-           | 29.63)                | 0.422    |
| PSA (ng/mL)                                 | 7.95(5.63-11.92)       | 11.7(7-22)            |                       | <0.001   |
| <b>WBC, 10<sup>3</sup>/mm<sup>3</sup></b>   | 7400(6400-8700)        | 7900(6500-8700)       |                       | 0.384    |
| leutrophil, 10³/mm³                         | 4400(3500-5400)        | 4500(3900-5500)       |                       | 0.250    |
| ymphocyte, 10 <sup>3</sup> /mm <sup>3</sup> | 2200(1800-2700)        | 2100(1600-            | 2600)                 | 0.167    |
| Monocyte, 10 <sup>3</sup> /mm <sup>3</sup>  | 500(500-700)           | 600(500-80            |                       | 0.077    |
| Platelet, 10 <sup>3</sup> /mm <sup>3</sup>  | 235000(193000-270000)  |                       | 3000-286000)          | 0.242    |
| NLR                                         | 1.95(1.5169-2.4815)    | 2.3043(1.70           |                       | 0.036    |
| -MR                                         | 4(3.2-5)               | 3.33(2.75-4           |                       | 0.003    |
| PLR                                         | 102.5(83.89-133.68)    | 116.33(90-1           |                       | 0.038    |
| IMR                                         | 7.8(6.25-9.75)         | 8(6.38-9.5)           | [57:5]                | 0.811    |
| Biopsy ISUP grade                           | 7.0(0.23-3.73)         | 0(0.50-5.5)           |                       | 0.011    |
|                                             |                        |                       |                       | -0.001   |
|                                             | 216(66.5)°             | 23(29.9) <sup>b</sup> |                       | <0.001   |
| 2                                           | 69(21.2) <sup>a</sup>  | 26(33.8) <sup>b</sup> |                       |          |
|                                             | 25(7.7) <sup>a</sup>   | 5(6.5)ª               |                       |          |
|                                             | 13(4) <sup>a</sup>     | 21(27.3) <sup>b</sup> |                       |          |
| 5                                           | 2(0.6) <sup>a</sup>    | 2(2.6) <sup>a</sup>   |                       |          |
| Postoperative ISUP grade                    | ·                      |                       |                       |          |
|                                             | 150(46.2)°             | 10(13) <sup>b</sup>   |                       | <0.001   |
| 2                                           | 109(33.5) <sup>a</sup> | 21(27.3)°             |                       |          |
| 3                                           |                        | 19(24.7) <sup>b</sup> |                       |          |
|                                             | 43(13.2) <sup>a</sup>  |                       |                       |          |
|                                             | 13(4) <sup>a</sup>     | 11(14.3) <sup>b</sup> |                       |          |
|                                             | 10(3.1) <sup>a</sup>   | 16(20.8) <sup>b</sup> |                       |          |
| Clinical stage                              |                        |                       |                       |          |
| Γ1                                          | 232(71.4) <sup>°</sup> | 38(49.4) <sup>b</sup> |                       | 0.001    |
| Γ2                                          | 90(27.7) <sup>a</sup>  | 38(49.4) <sup>b</sup> |                       |          |
| Γ3                                          | 3(0.9) <sup>a</sup>    | 1(1.3) <sup>a</sup>   |                       |          |
| D'Amico risk                                |                        |                       |                       | 1        |
| ₋ow risk                                    | 156(48) <sup>a</sup>   | 12(15.6) <sup>b</sup> |                       | <0.001   |
| ntermediate risk                            | 128(39.4) <sup>a</sup> | 30(39) <sup>a</sup>   |                       |          |
| High risk                                   | 41(12.6) <sup>a</sup>  | 35(45.5) <sup>b</sup> |                       |          |
|                                             | 41(12.0)               | 55(45.5)              |                       |          |
| Pathological stage                          | 224(72)                |                       |                       | 10.001   |
| 72                                          | 234(72)                | 27(35.1)              |                       | <0.001   |
| 3                                           | 91(28)                 | 50(64.9)              |                       | -        |
| Extraprostatic extension                    | 83(25.5)               | 44(57.1)              |                       | <0.001   |
| ymphovascular invasion                      | 48(14.8)               | 32(41.6)              |                       | <0.001   |
| Perineural invasion                         | 243(74.8)              | 69(89.6)              |                       | 0.006    |
| Seminal vesicle invasion                    | 31(9.5)                | 27(35.1)              |                       | <0.001   |
| Positive surgical margin                    | 64(19.7)               | 37(48.1)              |                       | <0.001   |
| ymph node invasion                          | 3(0.9)                 | 13(16.9)              |                       | <0.001   |
|                                             | Cox regression         | analysis              |                       |          |
|                                             | Univariate analysis    | . ,                   | Multivariate analysis |          |
| /ariables                                   | HR (95% CI)            | р                     | HR (95% CI)           | р        |
| lge (years)                                 | 1.007(0.969-1.045)     | 0.734                 | -                     | - P      |
| IMI (kg/m²)                                 | 1.023(0.961-1.09)      | 0.472                 |                       | -        |
| PSA (ng/mL)                                 | 1.034(1.024-1.043)     | <0.001                | 1.014(1.001-1.026)    | 0.032    |
| .og <sub>10</sub> WBC                       | 2.082(0.29-14.962)     | 0.466                 | -                     | -        |
| ILR>2.3333                                  | 2.066(1.319-3.236)     | 0.002                 | -                     | -        |
| .MR≤3.75                                    | 2.573(1.614-4.101)     | <0.002                | 1.769(1.091-2.868)    | 0.021    |
| PLR>106.5                                   | 2.103(1.319-3.354)     | 0.001                 | -                     | -        |
| MR≤8.75                                     | 1.269(0.783-2.057)     | 0.334                 |                       | -        |
| Postoperative ISUP grade                    | 1.1.00(0.7.00 1.0077   | 0.00 T                | I                     | 1        |
|                                             | Reference              | -                     | Reference             | -        |
|                                             | 2.782(1.309-5.911)     | 0.008                 | 1.803(0.824-3.944)    | 0.140    |
|                                             | 6.067(2.818-13.061)    | <0.001                | 2.45(1.058-5.673)     | 0.037    |
|                                             | 10.665(4.503-25.262)   | <0.001                | 6.392(2.544-16.064)   | <0.001   |
| r<br>                                       | 12.064(5.441-26.747)   | <0.001                | 3.855(1.568-9.477)    | 0.003    |
| -                                           |                        | -01001                | 5.005(1.000 5.477)    | Continu  |
| linical stage                               |                        |                       |                       | Continu  |
| Clinical stage                              | Deferrer               |                       |                       |          |
| <u>1</u>                                    | Reference              | -                     | -                     | -        |
| Г2-Т3                                       | 2.375(1.516-3.721)     | <0.001                | -                     | -        |
|                                             |                        |                       |                       |          |
| D'Amico risk                                | Reference              |                       | Reference             |          |

| Intermediate risk        | 3.244(1.657-6.348)   | 0.001   | 2.389(1.168-4.886) | 0.017 |
|--------------------------|----------------------|---------|--------------------|-------|
| High risk                | 9.46(4.885-18.321)   | <0.001  | 2.731(1.248-5.978) | 0.012 |
| Pathological stage       | ·                    | ·       | ·                  |       |
| T2                       | Reference            | -       | -                  | -     |
| Т3                       | 3.898(2.438-6.233)   | <0.001  | -                  | -     |
| Extraprostatic extension | 3.307(2.104-5.198)   | <0.001  | -                  | -     |
| Lymphovascular invasion  | 3.26(2.07-5.132)     | <0.001  | -                  | -     |
| Perineural invasion      | 2.389(1.147-4.976)   | 0.020   | -                  | -     |
| Seminal vesicle invasion | 3.932(2.458-6.288)   | <0.001  | -                  | -     |
| Positive surgical margin | 3.079(1.968-4.817)   | <0.001  | 2.302(1.431-3.705) | 0.001 |
| Lymph node invasion      | 11.912(6.402-22.165) | < 0.001 | 3.672(1.737-7.761) | 0.001 |

Confidence interval; HR: Hazard ratio; ISUP: International Society of Urological Pathology; LMR: Lymphocyte-to-monocyte ratio, NLR: Neutrophilto-lymphocyte ratio; NMR: Neutrophil-to-monocyte ratio; PLR: Platelet-to-lymphocyte ratio; PSA: Prostate specific antigen; WBC: White blood cell.

The relationship of BCR with study parameters after RP is shown in Table II. PSA, NLR, LMR, PLR, biopsy and postoperative ISUP grade, clinical stage, D'Amico risk, pathological stage, positive SM, EPE, LVI, PNI, SVI, and lymph node invasion were found to be statistically significant. The independent predictors of BCR were shown in Table II. BCR was independently associated with PSA (hazard ratio, HR=1.014, p=0.032), positive SM (HR=2.302, p=0.001), and lymph node invasion (HR=3.672, p=0.001). Only LMR (HR=1.769, p=0.021) remained to be a significant predictor of BCR among inflammation markers.

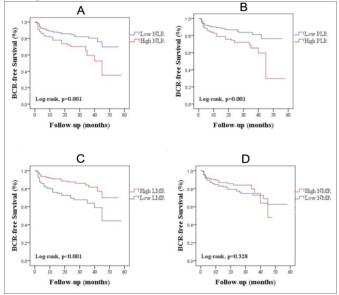



Figure 1: Biochemical recurrence-free survival curves according to predictive factors. The high-NLR (A), high-PLR (B), low-LMR (C) were significantly associated with decreased BCR-free survival. No association was found between NMR and BCR-free survival (D). BCR: Biochemical recurrence; LMR: Lymphocyte-to-monocyte ratio; NLR: Neutrophil-to-lymphocyte ratio; NMR: Neutrophil-to-monocyte ratio; PLR: Platelet-to-lymphocyte ratio.

BCR developed in 77 patients; and the mean time between RP and BCR was 18.09  $\pm$ 12.49. Kaplan-Meier survival analyses of patients are presented in Figure 1. The BCRFS was significantly shorter in the high-NLR group (p=0.001) (Figure 1A). The high PLR was significantly associated with decreased BCRFS (p=0.001) (Figure 1B). A significantly higher risk of experiencing BCR was found in the low-LMR

group (p<0.001) (Figure 1C). In terms of BCRFS, low and high NMR groups were not significantly different (p= 0.328) (Figure 1D).

#### DISCUSSION

The present study demonstrated that preoperative low LMR might be an independent factor in prediction of BCR after RARP. After scanning literature, no study was found to demonstrate an association between LMR and BCR. This study is the first to demonstrate lower LMR was associated with higher BCR rates. It is also found here that increased NLR and PLR, decreased LMR were associated with poor BCRFS.

Previous studies reported the association between the inflammation markers and the clinical outcome of the malignancies.<sup>7,12</sup> However, the exact mechanisms underlying the prognostic capacity of systemic inflammation markers remain to be clarified. The effects of neutrophils on the proliferation of tumor cells are well known.<sup>13</sup> Lymphocytes have a major role in inhibiting cancer cell proliferation and migration.<sup>14</sup> They have an antitumor effect. The decreased lymphocyte counts are correlated with an immunosuppressive status. Monocytes might differentiate into tumor-associated macrophages (TAM) when necessary, and TAM might support tumor growth, invasion, metastasis and angiogenesis.<sup>15</sup> Therefore, the number of monocytes could be representative of TAMs reflecting the tumor burden. The body's inflammatory response to malignancy is lymphocyte dependent, and there is an association between the high level of TAM and tumor invasiveness and clinical outcomes. Thus, LMR could reflect the inflammation states in the tumor microenvironment. Because of a reduction in lymphocytes or an increase in monocytes, low LMR would be associated with unfavourable oncological outcomes in cancer patients. CBC tests are frequently used in routine practice and LMR is an accessible and inexpensive clinical parameter. LMR is a costeffective parameter that can be used in clinical practice to estimate the outcomes of cancer patients.

There is increasing evidence correlating the lower LMR with poorer oncological results in patients with several malignan-

cies.<sup>16-18</sup> This study demonstrated that LMR is an independent factor to estimate BCR after RARP. Nishijima *et al.* performed a systematic review and meta-analysis including the patients with non-hematologic solid tumors. A low LMR represented an unfavorable factor for clinical outcomes.<sup>19</sup> Li *et al.* also published a meta-analysis to demonstrate the importance of LMR in the urologic malignancies.<sup>20</sup> However, there was no PCa patient in the studies including this meta-analysis. In a study including 214 castration-resistant PCa patients, absolute monocyte count (AMC) and LMR had associated with bad prognosis according to univariate analysis.<sup>21</sup> However, AMC remained an independent prognostic factor for prognosis.

Several meta-analyses have been performed to further validate the prognostic importance of NLR in PCa. <sup>22,23</sup> Tang *et al.* reported that NLR could be a marker in predicting the outcomes of locally advanced and/or castration-resistant PCa patients.<sup>22</sup> A recent systematic review also demonstrated that high NLR was associated with bad prognosis in all of the stratified categories except localised PCa.<sup>23</sup> The importance of NLR in PCa is not yet clear. High NLR had a significant association with BCR in univariate analysis, which was found in the present study.

BCR may occur in 35% after RP.<sup>3</sup> Detecting BCR after RP is important in identifying treatment failure and considering salvage therapy. Several clinical and pathological findings, such as PSA, stage of the disease, high Gleason score (GS), and positive surgical margin (PSM) are well-known predictors of BCR.<sup>5,24</sup> In this study, PSA, high GS, PSM, and lymph node invasion were independently predicted BCR. The authors had previously described the importance of the De Ritis ratio in predicting BCR after RP,<sup>25</sup> and found that it was an independent prognostic factor for prediction of BCR.

The mean time between radical prostatectomy and BCR was 18.09 months in the present study, which is relatively short when compared with the literature. RARP technique has a learning curve to gain experience. Initial RARP cases were included in this study, which were in the learning curve. This may cause shorter BCR mean time after RARP.

Most of the studies on this subject are retrospective. Therefore, there might be a bias to select patients. Large-scale prospective studies are needed to assess the presence of biomarkers to predict BCR after RP.

The present study also has some limitations. It has a retrospective design and the data are obtained from a single institution. Second, the population was also small with a short follow-up duration. Third, the role of other various medical conditions such as smoking, metabolic syndrome, cardiovascular diseases and some other unknown factors that could affect the results, was not evaluated in multivariate analyses.

## CONCLUSION

Preoperative low LMR might be an independent predictor for BCR in the patients who underwent RARP, which is a simple and inexpensive method. Low LMR was also more likely to have poor BCRFS. The prognostic utility of LMR should be evaluated in further large prospective cohorts.

#### **ETHICAL APPROVAL:**

Ethics Committee approval was received for this study from the Ethics Committee of Antalya Training and Research Hospital (Approval No. 4/10 – 03.2020).

#### PATIENTS' CONSENT:

Data of this retrospective study was collected from clinical archive.

#### **CONFLICT OF INTEREST:**

Authors declared no conflict of interest.

#### **AUTHORS' CONTRIBUTION:**

MTO: Conception, materials, data collection, analysis, writing and critical review.

- KK: Conception, materials and writing.
- KY: Materials and critical review.
- CO: Data collection.
- YA: Data collection.

MA: Material and critical review.

### REFERENCES

- Segal R, Miller K, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1):7-30. doi: 10.3322/caac.21442.
- Masood A, Iqbal N, Shohab D, Hassan A, Aimon S, Mehmood U, et al. Clinicopathological characteristics of prostate cancer in patients presenting to a tertiary care private sector hospital. J Coll Physicians Surg Pak 2018;28:409-11. doi: 10.29271/jcpsp.2018.05.409.
- Han M, Partin AW, Pound CR, Epstein JI, Walsh PC. Longterm biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15-year Johns Hopkins experience. *Urol Clin North Am* 2001; 28(3):555-565. doi: 10.1016/s0094-0143(05)70163-4.
- Preisser F, Chun FKH, Pompe RS, Heinze A, Salomon G, Graefen M, et al. Persistent prostate-specific antigen after radical prostatectomy and its impact on oncologic outcomes. *Eur Urol* 2019; **76(1)**:106-114. doi: 10.1016/j.eururo.2019.01.048.
- Kotb AF, Elabbady AA. Prognostic factors for the development of biochemical recurrence after radical prostatectomy. *Prostate Cancer* 2011; **2011**:485189. doi: 10.1155/2011/ 485189.
- Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917):860-7. doi: 10.1038/nature01322.
- Wu G, Yao Y, Bai C, Zeng J, Shi D, Gu X, *et al.* Combination of platelet to lymphocyte ratio and neutrophil to lymphocyte ratio is a useful prognostic factor in advanced non-small cell lung cancer patients. *Thorac Cancer* 2015; **6(3)**:275-87. doi: 10.1111/1759-7714.12178.

- An X, Ding PR, Li YH, Wang FH, Shi YX, Zang ZQ, et al. Elevated neutrophil to lymphocyte ratio predicts survival in advanced pancreatic cancer. *Biomarkers* 2010; 15(6):516-22. doi: 10.3109/1354750X.2010.491557.
- Minardi D, Scartozzi M, Montesi L, Santoni M, Burattini L, Bianconi M, et al. Neutrophil-to-lymphocyte ratio may be associated with the outcome in patients with prostate cancer. Springerplus 2015; 4:255. doi: 10.1186/s40064-015-1036-1.
- Lu Y, Huang HH, Lau WKO. Evaluation of neutrophil-to-lymphocyte ratio as a prognostic indicator in a Singapore cohort of patients with clinically localized prostate cancer treated with prostatectomy. *World J Urol* 2020; **38(1)**:103-9. doi: 10.1007/s00345-019-02752-4.
- Zhang GM, Zhu Y, Ma XC, Qin XJ, Wan FN, Dai B, et al. Pretreatment neutrophil-to-lymphocyte ratio: A predictor of advanced prostate cancer and biochemical recurrence in patients receiving radical prostatectomy. *Medicine (Baltimore)* 2015; **94(41)**:e1473. doi: 10.1097/MD.0000000 00001473.
- Shimada H, Takiguchi N, Kainuma O, Soda H, Ikeda A, Cho A, et al. High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. *Gastric Cancer* 2010; **13(3)**:170-176. doi: 10.1007/ s10120-010-0554-3.
- Gregory AD, Houghton AM. Tumor-associated neutrophils: New targets for cancer therapy. *Cancer Res* 2011; **71(7)**:2411-2416. doi: 10.1158/0008-5472.CAN-10-2583.
- Stulting RD, Berke G. Nature of lymphocyte-tumor interaction: A general method for cellular immunoabsorption. *J Exp Med* 1973; **137(4)**:932-42. doi: 10.1084/jem.137.4.932.
- Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. *Cell* 2006; 124(2):263-266. doi: 10.1016/j.cell.2006.01.007.
- Song Q, Wu JZ, Wang S. Low preoperative lymphocyte to monocyte ratio serves as a worse prognostic marker in patients with esophageal squamous cell carcinoma undergoing curative tumor resection. J Can 2019; **10(9)**:2057. doi: 10.7150 /jca.29383.
- 17. Yokota M, Katoh H, Nishimiya H, Kikuchi M, Kosaka Y, Sengoku N, *et al.* Lymphocyte-monocyte ratio significantly

predicts recurrence in papillary thyroid cancer. J Surg Res 2020; **246**:535-43. doi: 10.1016/j.jss.2019.09.034.

- Zhang XK, Yang P, Zhang ZL, Hu WM, Cao Y. Preoperative low lymphocyte-to-monocyte ratio predicts poor clinical outcomes for patients with urothelial carcinoma of the upper urinary tract. Urol J 2018; 15(6):348-54. doi: 10.22037/uj.v0i0.4120.
- Nishijima TF, Muss HB, Shachar SS, Tamura K, Takamatsu Y. Prognostic value of lymphocyte-to-monocyte ratio in patients with solid tumors: A systematic review and meta-analysis. *Cancer Treat Rev* 2015; **41(10)**:971-8. doi: 10.1016/j.ctrv.2015.10.003.
- Li J, Cheng Y, Ji Z. Prognostic value of pretreatment lymphocyte-to-monocyte ratio in patients with urologic tumors: A PRISMA-compliant meta-analysis. *Medicine (Baltimore)* 2019; **98(2)**:e14091. doi: 10.1097/MD.000000000014091.
- Shigeta K, Kosaka T, Kitano S, Yasumizu Y, Miyazak Y, Mizuno R, *et al.* High absolute monocyte count predicts poor clinical outcome in patients with castration-resistant prostate cancer treated with docetaxel chemotherapy. *Annals Surgical Oncol* 2016; **23(12)**:4115-4122. doi: 10.1245/ s10434-016-5354-5.
- Tang L, Li X, Wang B, Luo G, Gu L, Chen L, et al. Prognostic value of neutrophil-to-lymphocyte ratio in localized and advanced prostate cancer: A systematic review and meta-analysis. *PLoS One* 2016; **11(4)**:e0153981. doi: 10.1371/journal.pone.0153981
- Peng H, Luo X. Prognostic significance of elevated pretreatment systemic inflammatory markers for patients with prostate cancer: A meta-analysis. *Cancer Cell Int* 2019; **19**:70. doi: 10.1186/s12935-019-0785-2.
- Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. *J Urol* 2003; 169(2):517-23. doi: 10.1097/01.ju.0000045749.90353.c7.
- Karamık K, Aktaş Y, Yıldız A, Erol I, İslamoğlu E, Ateş M, et al. Predictive role of de ritis ratio in biochemical recurrence after radical prostatectomy. *Medical Bulletin of Haseki/Haseki Tip Bulteni* 2020; **58**:84-93. DOI: 10.4274/haseki.galenos.2019.5592

• • • • • • • • • • •