Diagnostic Accuracy of Immature Platelet Fraction (IPF) to Differentiate Between Thrombocytopenia due to Peripheral Destruction versus Bone Marrow Failure

Muhammad Bilal Asghar, Fahim Akhtar, Asad Mahmood, Nabila Rafique, Noman Anjum Rana and Usama Bin Khalid

1Department of Haematology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, Pakistan
2Department of Haematology, Armed Forces Institute of Transfusion (AFIT), Rawalpindi, Pakistan
3Department of Haematology, Armed Forces Bone Marrow Transplant Centre (AFBMTC), Rawalpindi, Pakistan

ABSTRACT

Objective: To analyse the predictive value of immature platelet fraction (IPF) as an independent diagnostic marker to differentiate between hyperdestructive and hypoproductive thrombocytopenia.

Study Design: Cross-sectional observational study.

Place and Duration of the Study: Armed Forces Institute of Pathology Rawalpindi, from February to July 2022.

Methodology: A total of 164 samples were included in the study by non-probability consecutive sampling. Among these, 80 were obtained from normal individuals serving as control; 43 were obtained from patients having hyperdestructive thrombocytopenia (idiopathic thrombocytopenia, thrombotic thrombocytic purpura, disseminated intravascular coagulation); and 41 were obtained from those hypoproductive thrombocytopenia (acute leukaemia, aplastic anaemia, chemotherapy). Sysmex automated haematology analyzer, XN-3000 was used to determine the immature platelet fraction (IPF) of the patients. ROC curves analysis was done to ascertain area under curve.

Results: Immature platelet fraction (IPF %) was significantly higher in consumptive / hyperdestructive thrombocytopenia group i.e. median (IQR), 21% (14.4-26.2) as compared to 6.5% (4.6-8.9) in hypoproductive thrombocytopenia, and 2.6% (1.3-4.1) in normal control group (p <0.001). Cut-off value with the highest sensitivity and specificity for IPF vs. normal population was 7.95% with sensitivity of 97.7% and specificity of 86%.

Conclusion: Immature platelet fraction (IPF of 7.95%) possesses high diagnostic accuracy, sensitivity and specificity for differentiation between hyperdestructive vs. hypoproductive thrombocytopenia. It can be used as a reliable marker to differentiate between the two entities.

Key Words: Immature platelet fraction, Thrombocytopenia, Bone marrow failure, Peripheral destruction.

How to cite this article: Asghar MB, Akhtar F, Mahmood A, Rafique N, Rana NA, Khalid UB. Diagnostic Accuracy of Immature Platelet Fraction (IPF) to Differentiate Between Thrombocytopenia due to Peripheral Destruction versus Bone Marrow Failure. J Coll Physicians Surg Pak 2023; 33(07):760-764.

INTRODUCTION

Platelets are fragments of megakaryocytes released from bone marrow. Each megakaryocyte can give rise to 1000 – 5000 platelets. Their production is regulated by thrombopoietin (TPO), 95% of which is secreted by liver. Platelets are small bodies with sizes varying around 0.5 – 3.0 µm. With a life span of 10 days and normal range of 150 - 400 x10^9/L, they help to maintain hemostasis and prevent bleeding.

Decrease in platelet count (thrombocytopenia) can lead to a range of symptoms varying from petechie (capillary bleed) and purpura (bruising) to excessive bleeding from mucocutaneous membranes. Thrombocytopenia is predominantly due to either decreased production from bone marrow or increased peripheral destruction. Other causes include abnormal distribution (hyperplenism), dilution factors (pregnancy) and drugs including antibiotics and chemical agents.

Hypproductive causes encompass bone marrow failure conditions like acute leukaemia, aplastic anaemia, myelodysplastic neoplasm, bone marrow infiltration by secondary neoplasms, and patients on chemotherapy. On the other hand, hyperdestruction can be due to immune thrombocytopenic purpura (ITP), disseminated intravascular coagulation (DIC), thrombotic thrombocytopenic purpura (TTP), infections like malaria, and dengue virus.

Following thrombocytopenia, bone marrow releases reticulated platelets which contain remnants of RNA. They are called
immature platelet fraction (IPF) and are analogs of reticulocytes. As they age, their RNA content and size tend to decrease. Modern automated haematology analyzers like Sysmex XN – 3000 (Kobe, Japan) can be used to quantitate IPF. They calculate percentages (%) of immature platelets as compared to mature platelets and their absolute value. The machine works on the principle of flowcytometry to obtain IPF after staining RNA within immature platelets, thus representing bone marrow activity in response to thrombocytopenia.

Studies have shown that IPF % can be near normal or slightly elevated in patients with bone marrow failure conditions. Whereas increased peripheral destruction can lead to massive increase in IPF %. The objective of this study was to evaluate the diagnostic accuracy of immature platelet fraction (IPF) to differentiate between the causes of thrombocytopenia occurring either due to peripheral destruction or bone marrow failure.

METHODOLOGY

This cross-sectional study was conducted at the Armed Forces Institute of Pathology Rawalpindi, over a period of 06 months from February to July 2022. WHO calculator was used to determine sample size which came out to be 164. Non-probability consecutive sampling was used to collect samples.

Among these, 80 samples had normal findings on blood complete picture (CP) so they were used as normal control. Eighty-four individuals had abnormal platelet count on CP. Clinical history, physical examination, peripheral blood film and bone marrow examination with trephine biopsy were used to label the diagnosis.

Forty-one patients were diagnosed with hypoproduc...
Table I: Comparison of demographics and clinical findings among groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Healthy control group*</th>
<th>Hypoproductive thrombocytopenia group*</th>
<th>Hyperdestructive / consumptive thrombocytopenia group*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (N)</td>
<td>80</td>
<td>41</td>
<td>43</td>
</tr>
<tr>
<td>Age (years)</td>
<td>27.4 ± 19.1</td>
<td>30 ± 24.2</td>
<td>34 ± 25.2</td>
</tr>
<tr>
<td>TLC (x10^9/L)</td>
<td>8.6 (6.6–11.4)</td>
<td>3.2 (1.8–12.5)</td>
<td>7.6 (6.2–8.7)</td>
</tr>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>12.5 (11.6–14.8)</td>
<td>8.7 (7.8–10.1)</td>
<td>11.3 (10.1–12.4)</td>
</tr>
<tr>
<td>Platelets (x10^11/L)</td>
<td>265 (169–385)</td>
<td>36 (15–70)</td>
<td>63 (20–87)</td>
</tr>
<tr>
<td>IPF (%)</td>
<td>2.6 (1.3–4.1)</td>
<td>6.5 (4.6–8.9)</td>
<td>21 (14.4–26.2)</td>
</tr>
<tr>
<td>PDW (fL)</td>
<td>11.6 (10.5–12.9)</td>
<td>13.5 (12.5–14.8)</td>
<td>18 (13.2–21.0)</td>
</tr>
<tr>
<td>MPV (fL)</td>
<td>10.2 (9.3–11.1)</td>
<td>11.3 (10.6–12.8)</td>
<td>14 (12.0–15.0)</td>
</tr>
<tr>
<td>P– LCR (%)</td>
<td>0.33 (0.22–0.38)</td>
<td>0.06 (0.04–0.08)</td>
<td>0.18 (0.09–0.33)</td>
</tr>
<tr>
<td>PCT (%)</td>
<td>27.3 (19.7–34.3)</td>
<td>33.9 (31.0–38.2)</td>
<td>33 (30.0–36.0)</td>
</tr>
</tbody>
</table>

*Values are ± standard deviations or medians (25th–75th interquartile ranges) for WBC/TLC, Hb, PLT, IPF, PDW, MPV, P-LCR and PCT.

The correlation between platelet count and different parameters was determined for three platelet groups; <40x10^9/L, 40–90x10^9/L, and >90x10^9/L. For IPF, values came out to be 12.7±8.2%, 14.9±12.5%, and 5.5±8.5%, respectively. The values for PDW were 14.5±3.2%, 16.9±4.1%, and 12.6±3.5%, respectively. Similarly, figures for MPV for three platelet groups were 12.4±1.5%, 13.3±2.6%, and 10.6±1.8%, respectively. Values for P-LCR were also determined which were 34.4±5.6%, 36.9±10.9%, and 28.3±9.3%, respectively. These results emphasised that with lower platelet counts, the values of different platelet parameters including IPF, tend to rise towards higher side. As the platelet count improves, the figures tend to take decreasing trend and normalise predicting recovery.

Receiver operating characteristics (ROC) curves and area under the curve (AUC) were ascertained for assessment of differences in sensitivities and specificities of IPF and other platelet indices in the target groups. Peripheral destruction/hyperdestructive group analysis showed that area under the curve was maximum for IPF (0.98), which highlights its discriminatory ability to differentiate between the two study groups. The second highest indicator was MPV (0.90), followed by PDW (0.82) and P-LCR (0.66). PCT showed the lowest AUC (0.48), so it is not a suitable indicator. Cut-off values with highest sensitivity and specificity were also ascertained. For IPF, it was 7.95% with sensitivity of 97.7% and specificity of 86%.

ROC curves for different platelet indices are shown in Figure 2.

DISCUSSION

Although, bone marrow aspiration with trephine biopsy is the gold standard for the assessment of patients presenting with thrombocytopenia, however, platelet indices, especially IPF holds significant importance in determining the cause over
the rest of the indices. Therefore, it holds strong significance in routine haematology.

This analysis outcomes were coherent with those of previous studies. The IPF reference value as determined by Ali et al. in their study was 1.6 – 10.1% with median 4.4% (11), while median of this study control group was 2.6% (IQR 1.3 - 4.1). Sachdev et al., demonstrated the reference interval for IPF in their study to be 0.3 – 8.1% (mean 2.1%). Whereas for this study, the control group mean was 3.1 ± 2.3%.

In a study conducted by Adly et al., it was demonstrated that IPF can be significantly higher in patients having ITP as compared to those having decreased production. Similarly, Strauss et al. reported IPF as a parameter for distinguishing thrombocytopenia in pediatric acute lymphoblastic leukaemia from ITP, established that ALL patients due to bone marrow failure have reduced IPF levels in comparison to patients having ITP. Same was demonstrated in this study as the hypoproducive population consisted of patients having acute leukaemia (ALL/AML), AA, MDS, cancers and those on chemotherapy, all having reduced IPF and other platelet parameter levels as compared to peripheral destruction group.

Naz et al. reported importance of IPF as predictor of ITP, expounded that IPF% value by Sysmex haematology analyzer can predict ITP. Their mean IPF% for ITP patients was 16.39% while for non-ITP patients, it was 7.69% being statistically significant with p-value of <0.001. Hyperdestructive thrombocytopenia group with mean 22.5 ± 11.1% and hypoproducive group with mean 6.7 ± 2.9% in the present study. Similar was the case with sensitivity and specificity. Therefore, the present conclusion was consistent with their results in determining IPF as a better predictor of ITP.

ROC analysis in this research has proven that hyperdestructive patient group has much higher AUC, sensitivity and specificity for IPF in comparison to bone marrow failure group. The ROC results were consistent with those of studies done in the past. Jeon et al., concluded in their study that AUC was highest for IPF (0.93) with 95.5% sensitivity and 73.5% specificity, followed by PDW (0.87), P– LCR (0.82) and MPV (0.78). Whereas in the present study, AUC for IPF was higher (0.98) with sensitivity of 92% and specificity of 86%, favouring this hypothesis.

Van De Wyngaert et al. reported IPF as a reliable tool to predict peripheral thrombocytopenia, and concluded that on Sysmex haematology analyzer, IPF% of >13% is predictive of peripheral destruction of platelet, especially in cases which only have thrombocytopenia and rest CBC is within normal limits. In this study, with ROC curve analysis, value was 7.95%; with sensitivity of 92%; specificity of 86%. Therefore, this measurement could help the authors narrow down their differential and avoid bone marrow aspirations.

IPF, in addition to its role in differentiating the cause of thrombocytopenia, can also be a predictor of bone marrow recovery. Zucker et al. demonstrated that IPF, being non-invasive parameter, can be used as to monitor patients’ response and recovery undergoing chemotherapy to acute leukaemias (ALL or AML). Results were consistent with the present study.

One of the related significance of IPF is in patients undergoing haematopoietic stem cell transplant. Sakuragi et al. examined percentages of IPF in patients of allogenic stem cell transplant and declared it significant in predicting recovery in these patients. This adds up to the prime importance of IPF as discussed earlier. Although this study provides an excellent relationship between different non-invasive markers including IPF in diagnosis of the causes of low platelets counts, a more comprehensive, multicentric study at the national level is suggested to validate these markers for future use.

CONCLUSION

Among the patients presenting with thrombocytopenia, IPF has the best discriminator power to determine the cause. Although, bone marrow examination remains the gold standard investigation being a non-invasive parameter, simple and easy to perform, less time consuming and high diagnostic accuracy, IPF holds vital significance in narrowing down the differentials.

ETHICAL APPROVAL:

Ethical approval and support letter were acquired from the Institutional Review Board (IRB) dated 5th May 2021 before starting the research.

PATIENTS’ CONSENT:

Informed consent were obtained from patients to publish the data concerning this case.

COMPETING INTEREST:

There are no competing interest to disclose.

AUTHORS’ CONTRIBUTION:

MBA: Conceptualised the study, collected and analysed the data, and drafted the manuscript.

FA: Conceptualised the study, collected and analysed the data, and drafted the manuscript.

AM: Revised it critically for important intellectual content.

NR: Did data acquisition, its interpretation, and manuscript writing.

NAR: Analysed the data and drafted the manuscript.

UBK: Worked on interpretation and intellectual content.

All of the study participants agreed to be responsible for all aspects of the project, ensuring that any issues about the work’s accuracy or integrity are thoroughly examined and addressed.

REFERENCES

Diagnostic accuracy of immature platelet fraction to differentiate between thrombocytopenia due to peripheral destruction versus bone marrow failure


