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Detection of Schistosoma Eggs Using an AI-Based Deep
Learning Model on Urinary Bladder Histopathology
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ABSTRACT
Objective: To assess the accuracy and clinical applicability of YOLO-based segmentation models for detecting Schistosoma eggs in
urinary bladder histopathology slide images, focusing on both bounding box and mask segmentation tasks.
Study Design: A descriptive, cross-sectional study.
Place  and Duration  of  the  Study:  Artificial  Intelligence  Technology  Centre,  National  Centre  for  Physics,  Islamabad,  Pakistan,  from
September to November 2024.
Methodology: A high-quality dataset was compiled using histopathological slides obtained from real patient samples available on the
open-source platform PathPresenter. All images were meticulously annotated by expert histopathologists. The dataset included 681
images containing 2,751 schistosomes, divided into 476 training images (1,932 schistosomes), 136 validation images (539 schisto-
somes), and 69 testing images (280 schistosomes). Data pre-processing techniques were applied to optimise the quality of training and
evaluation  datasets.  Multiple  YOLO-based  segmentation  models,  such  as  YOLOv5,  YOLOv8,  YOLOv9,  and  YOLOv11  variants
(n/s/m/l/x/c/e), were trained and evaluated for both bounding box and mask detection. Model performance was evaluated using preci-
sion, recall, F1 score, mean Average Precision at 50% Intersection over Union (IoU; mAP50), and mAP across 50 to 95% IoU (mAP50-95)
for both bounding box and mask segmentation tasks.
Results: Among the models, YOLOv8l demonstrated the highest diagnostic accuracy, achieving an F1 score of 95.09 and a mAP50 of
96.8 for bounding box detection. For mask detection, it attained an F1 score of 94.19 and an mAP50 of 96.2. YOLOv5m and YOLOv5x
also performed well, balancing accuracy with computational efficiency. Smaller models exhibited limitations in sensitivity and precision.
Conclusion: YOLO-based segmentation models exhibit strong potential for automated detection of schistosomiasis in urinary bladder
histopathology images. However, future large-scale validation studies on bigger datasets are required for further confirmation.
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INTRODUCTION

Schistosomiasis is a chronic tropical parasitic disease caused
by Schistosoma  trematode blood flukes,  affecting over 700
million people across 78 countries, primarily in low- and middle-
income  countries.1,2  Conventional  microscopy  remains  the
standard  for  detecting  S.  haematobium  infection  through
egg identification and quantification in stool/urine samples.3
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However, this method is labour-intensive, expertise-dependent,
and  requires  laboratory  infrastructure,  limiting  its  use  in
resource-poor areas. Advanced techniques such as real-time
PCR and lateral flow tests offer higher sensitivity or specificity
but face similar infrastructure constraints.3-5

Schistosomiasis presents in urinary bladder biopsies as charac-
teristic oval eggs with terminal spines, typically surrounded by
granulomatous inflammation, fibrosis, or calcification.3 Chronic
infection may result in complications such as bladder fibrosis,
hydronephrosis,  and  increased  squamous  cell  carcinoma.
Early identification enables timely treatment and helps prevent
severe  long-term  complications.3,6  Automated  digital  micro-
scopes  integrated  with  AI  algorithms  offer  customisable
tools  for  schistosomiasis diagnosis.6-8 Recent  studies  have
validated  their  diagnostic  accuracy  for  S.  haematobium,
reporting  sensitivity  ranging  from  32  to  91%  compared  to
conventional microscopy.9 A two-stage deep learning frame-
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work  achieved  93.75%  sensitivity,  93.94%  specificity,  and
93.75% precision.10

Traditional diagnostic methods in resource-limited areas are
slow and error-prone. This study used YOLO-based segmenta-
tion models to precisely outline egg locations. By leveraging
pathologist-annotated data, the research aimed to provide a
fast,  accurate,  and  practical  solution  to  assist  pathologists,
reduce their workload, and enable timely and consistent diag-
noses.

METHODOLOGY

This study was conducted at the Artificial Intelligence Tech-
nology  Centre,  National  Centre  for  Physics,  Islamabad,
Pakistan, from September to November 2024. Ethical approval
was exempted (Ref No. 2025-7717-23671), and the study was
not  funded.  A  systematic  approach  was  used  to  detect
schistosomiasis  using  YOLO-based  segmentation  models,
which is a deep learning-based object detection framework that
detects  and  classifies  objects  in  images  at  high  speed  by
running images in one pass and dividing  them  into  gridded
sections to  make predictions of  bounding boxes and class
probabilities simultaneously. It is highly accurate and efficient
in deep learning-based helminth egg detection.10,11

Schistosomes  have  a  complex  and  variable  morphology,
including  irregular  shapes  and  clustering  patterns  in  tissue
sections. Therefore, segmentation models that divide an image
into semantically meaningful parts offer greater precision than
standard object detection methods, making them more suit-
able for high-throughput histopathological analysis. Detection
models are faster, but due to overlapping parasites and much
larger computing requirements, these models have become
less useful.

For  dataset  preparation,  histopathological  images  obtained
from PathPresenter, an open-source pathology database, with
resolutions of 1200 x 1600, 1600 x 1200, and 1860 x 890 were
included in the study. The manual annotation of Schistosoma
eggs  was  performed  by  two  histopathologists  from  United
Medical and Dental College (UMDC) and Jinnah Sindh Medical
University (JSMU) to ensure accuracy and clinical relevance.
Annotation  refinement  was  carried  out  using  LabelMe.  To
ensure diagnostic reliability, ambiguous images that could not
be confidently annotated, those of poor diagnostic quality, and
those not meeting the required resolution standards for annota-
tion were excluded from the dataset. Data pre-processing tech-
niques included normalisation, sharpening, resizing, and histo-
gram equalisation to enhance image quality for AI training. Data
augmentation techniques—such as flipping, rotation, Mix-Up,
Copy-Paste, and mosaic transformations—were applied to 40%
of the training set to improve model generalisation. The dataset
was divided into training (70%), validation (20%), and testing
(10%) subsets. Table I(A) shows the data distribution, confirming
the integrity and representativeness of these splits.

The YOLO versions used in the study were YOLOv5, YOLOv8,
YOLOv9, and YOLOv11. Hyperparameters were optimised to

enhance segmentation accuracy and computational efficiency.
The important hyperparameters are shown in Table I(B).

Training of all the models was conducted on an NVIDIA RTX 4060
GPU (8GB VRAM) with an Intel Core i9-14900KF processor and
64 GB RAM by the author, Aqsa Abu Bakar, from AITec. This hard-
ware configuration ensured the smooth handling of the huge
computational  demands  posed  by  this  big  dataset  and
resource-intensive training processes.

To evaluate the accuracy and effectiveness of the YOLO models
for Schistosoma egg detection, several statistical metrics were
applied: precision, which measures the proportion of correctly
identified positive detections; recall, which assesses the propor-
tion of actual positives correctly detected; and the F1 score,
which represents the harmonic mean of precision and recall,
providing a measure of balanced performance. Additionally,
mean Average Precision (mAP) at 50% Intersection over Union
(IoU; mAP50) and mAP across 50 to 95% IoU (mAP50-95) were
used to quantify detection quality across varying overlap thresh-
olds. These metrics were calculated for both bounding box and
mask segmentation tasks to comprehensively assess model
performance.  Confusion  metrics  were  also  calculated  to
support  performance  evaluation.  True  positives  (TP)  were
regions correctly identified as eggs, true negatives (TN) were
correctly identified non-egg regions, false positives (FP) were
regions wrongly classified as eggs, and false negatives (FN)
were actual eggs missed by the model. These formed the basis
for computing precision, recall, F1-score, and related metrics.
The model performance was assessed using standard evalua-
tion metrics for object detection and segmentation tasks. Preci-
sion was calculated as the ratio of true positive detections to the
total number of positive predictions (TP / (TP + FP)), while recall
measured the proportion of actual positive cases correctly iden-
tified (TP / (TP + FN)). The F1 score provided a balanced measure
of precision and recall, calculated as 2 × (Precision × Recall) /
(Precision  +  Recall).  Additionally,  the  mAP  was  computed
across IoU thresholds from 0.5 to 0.95, calculated as (1 / 10) × Σ
(AP at IoU from 0.5 to 0.95), providing a comprehensive assess-
ment of model performance across different detection confi-
dence levels.
Table I: (A) Data split (B) Hyperparameter used during the training.

Dataset split Images Schistosomes
Training 476 1,932
Validation 136 539
Testing 69 280
Total 681 2,751
Hyperparameters Values
Task Segment
Epochs 100
Batch 8 (n, s, m, c) / 4 (l, x, e)
Workers 8
Optimiser AdamW
Seed 0
Deterministic True
Single_cls False
Learning rate (Lr) 0.002
Momentum 0.9
Weight_decay 0.0005
Warmup_epochs 3
Warmup_momentum 0.8
Warmup_bias_lr 0.1
Mask_ratio 4



Automated detection of  Schistosoma  eggs via deep learning model

Journal  of  the College of  Physicians and Surgeons Pakistan 2025,  Vol.  35(11):1385-1390 1387

Table II: Evaluation metrics of various YOLO models.                                                                 

Models Box (P) Box (R) Box
(F1 score)

Box
(mAP50)

Box
(mAP50-95)

Mask
(P)

Mask (R) Mask
(F1 score)

Mask
(mAP50)

Mask
(mAP50-95)

YOLOv5n 92.7 86 89.22 92.4 72 92.7 86 89.22 92.6 68
YOLOv5s 91.7 88.1 89.86 93.5 75.2 92.3 87 89.57 92.7 71.8
YOLOv5m 91.2 93.2 92.19 96.9 80.2 91.2 93.2 92.19 96.9 75.7
YOLOv5l 87.7 90 88.84 95.1 79.5 87.7 90 88.84 94.1 75.7
YOLOv5x 93.8 90.4 92.07 95.7 77.4 93.2 92 92.6 96.6 75.2
YOLOv8n 91.6 87.3 89.4 94.8 74.9 89.5 85.4 87.4 93.2 70
YOLOv8s 90.5 86 88.19 93 76.3 90.5 86 88.19 93.1 72.6
YOLOv8m 92.4 90 91.18 93.2 78.1 89.7 93 91.32 93.9 72.7
YOLOv8l 94.2 96 95.09 96.8 81.1 93.4 95 94.19 96.2 77
YOLOv8x 93.3 85 88.96 92.9 76.8 93.3 85 88.96 93.8 73
YOLOv9c 81 91 85.71 92.7 73.7 81 91 85.71 92.5 69.7
YOLOv9e 91.3 88 89.62 94.3 74.4 91.3 88 89.62 94.1 70.1
YOLOv11n 84.2 90.5 87.24 94 72.5 83.3 89.5 86.29 93.2 68.4
YOLOv11s 92 90 90.99 92.5 76 92 90 90.99 92.5 70.8
YOLOv11m 91.2 93 92.09 95.6 77.4 90.8 92 91.4 94.9 74
YOLOv11l 89.2 91.2 90.19 95.2 77.7 89.2 91.2 90.19 94.8 72.6
YOLOv11x 86.4 92 89.11 92.7 75.1 86.4 92 89.11 93.1 69.7
P: Precision; R: Recall; mAP: Mean average precision.

Figure 1:  (A) F1 score of  different variants of  YOLO. (B) mAP@50 of
different  variants  of  YOLO.  (C)  mAP@50-95  of  different  variants  of
YOLO on the schistosomiasis dataset.

Model selection was determined based on validation scores
derived from the unique validation set (136 images, 539
schistosomes), where models were ranked by F1 score and
mAP50  to  identify  the  best  performer  for  Schistosoma
eggs detection.  The differences were calculated  based on
confusion metrics (TP, TN, FP, and FN) from the validation
set,  with  the  final  evaluation  confirmed  on  the  testing  set
(69  images,  280  schistosomes).  Statistical  analysis  was
performed  using  Python-based  tools,  specifically  the  SciPy
library  and  NumPy for  metric  calculations,  ensuring  the
robust and reproducible evaluation of model effectiveness.

RESULTS

Training  time  varied  across  YOLO  versions.  YOLOv5n
trained the fastest (25.38 minutes), while YOLOv5x took the
longest  (63.96  minutes).  YOLOv8n  was  the  most  efficient
(8.58 minutes), and YOLOv8x took 71.52 minutes, whereas
YOLOv9e  required  the  longest  training  time  (81.54
minutes).  For  the  YOLOv11 series,  YOLOv11n took  9.18
minutes, and YOLOv11x finished training in 69.96 minutes.
The smaller models trained faster due to fewer parameters,
and  the  complex  models  required  extended  training
periods, highlighting the evolution of YOLO architecture and
demonstrating improvements in processing efficiency while
maintaining the model complexity.

The result  of  the segmentation task in  terms of  perfor-
mance of various YOLO models for the Schistosoma  egg
detection is  shown in  Table  II.  The performances within
each category were compared in both bounding box and
mask metrics with respect to precision, recall, and F1 score
(Figure 1A), mAP@50 (Figure 1B), and mAP@50-95 (Figure
1C).  Various  YOLO  model  versions  and  their  differences
about scale and higher-performing architectures have been
compared (Figure 1C). The model works perfectly with a
few FP,  which can further be reduced by tightening the
threshold.

Losses  for  bounding  box,  segmentation,  classification,  and
distribution focal  loss consistently  declined,  as shown in
Figure  2A.  Validation  exhibited  a  similar  trend,  confirming
effective generalisation to the new data without overfitting
and ensuring reliable performance on new data. Precision,
recall,  and mAP demonstrated a successive increase per
epoch.  The  final  mAP@0.5  and  mAP@0.5-0.95  values  indi-
cated  excellent  detection  performance.  This  progression
showed  robust  feature  learning  and  effective  performance
in both detection and classification tasks. YOLOv8l achieved
a high mAP@0.5 of 0.922 for detecting Schistosoma eggs
(Figure 2B), demonstrating excellent diagnostic accuracy.
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Figure 2: (A) Training results for YOLOv8l. (B) Precision-recall curve for YOLOv8l training.

 

Figure 3: (A) Bounding box detection. (B) Mask segmentation task. (C) Predictions of YOLOv8l on unseen data.

The precision-recall  curve confirmed a strong balance between
sensitivity and specificity, minimising FP while maintaining high
recall. For bounding box detection (Figure 3A), larger models
outperformed smaller ones, with YOLOv8l leading at an F1 score
of 95.09 and mAP50 of 96.8 (Figures 1A, B).  YOLOv5m also
performed well (F1 score: 92.19, mAP50-95: 80.2, Figure 1C). In
contrast, YOLOv9c and YOLOv11n, due to their smaller size, had
lower F1 scores of 85.71 and 87.24, respectively (Figure 1A).

Mask  detection,  a  more  complex  task  (Figure  3B),  also
favoured YOLOv8l (F1: 94.19, mAP50: 96.2, Figures 1A, B). It is
the  identification  and  localisation  of  specific  regions  in  an
image, highlighting regions of interest such as parasites, cells,
or  abnormalities.  YOLOv5m  followed  closely  (F1:  92.19,

mAP50: 96.9). Larger models, such as YOLOv8x and YOLOv8m,
maintained strong performance (F1: 92.6 and 91.32, respec-
tively).  However,  smaller  models  (YOLOv11n and YOLOv9c)
showed  reduced  accuracy  (Figure  1A)  likely  due  to  fewer
parameters,  which  restrict  their  ability  to  learn  complex
features  necessary  for  future  learning.  When YOLOv8l  was
tested on unseen histopathology slides (Figure 3C), it main-
tained robust performance, highlighting its potential  for the
real-world histopathological applications.

DISCUSSION

Schistosomiasis remains a major parasitic disease, particu-
larly in endemic regions where conventional microscopy is
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labour-intensive  and  resource-dependent.1,3  AI-based  tools
offer  an  alternative  diagnostic  approach,  improving  both
efficiency  and  accuracy.12,13  This  study  evaluated  YOLO-
based segmentation models for detecting Schistosoma eggs
in histopathological images, with YOLOv8l demonstrating the
highest accuracy.

This study used an open-source dataset with expert histo-
pathologist annotations. YOLOv8l achieved an F1 score of
95.09  and  mAP@50  of  96.8  in  bounding  box  detection,
outperforming  earlier  models.  Previous  studies  using
YOLOv5m reported an F1 score of  92.4 and mAP@50 of
90.8,12  while  faster  regional-based  convolutional  neural
network (R-CNN) achieved a mAP@50 of 88.7.13 The superior
feature  extraction  and  recall  accuracy  of  YOLOv8l
contributed  to  its  improved  performance.

For mask segmentation, YOLOv8l achieved an F1 score of
94.19 and mAP@50 of 96.2, surpassing YOLOv5 (F1 of 89.5)
in helminth segmentation. The smooth decline in training
and  validation  loss  indicated  effective  optimisation  and
generalisation  on  unseen  data,  confirming  its  clinical  relia-
bility, similar to the trends reported in other studies on para-
sitic  egg-identification  using  a  convolution  and  attention
network.14,15

Previous studies have shown the potential of computational
techniques on digital images.16,17 Colley et al. highlighted that
the  ability  to  diagnose  schistosomiasis  rapidly  and  accu-
rately is crucial in endemic regions, where delayed treat-
ment  often  results  in  severe  morbidity.18  Another  study
supported the need for advanced, automated tools, such as
AI,  to  complement  traditional  diagnostics,  which  can be
slow and resource-intensive in endemic areas.19  The CNN
and deep learning models, such as YOLO, can offer a faster
and reliable solution by automating the detection of parasitic
eggs  in  histopathological  images,  thus  significantly  improv-
ing the diagnostic speed and accuracy.10,20-22 Wang et al. high-
lighted that YOLOv5 could improve in accuracy and robust-
ness when combined with other AI techniques.23 The findings
of this study establish YOLOv8l as a highly accurate model for
Schistosoma  egg detection in histopathological  images.  Its
improved performance over previous models suggests poten-
tial  integration  into  histopathology  workflows.  The  combina-
tion of  detection and segmentation in  AI-based diagnostic
models presents a significant leap forward in the diagnosis of
parasitic diseases, as highlighted by another study.24 Future
research should focus on real-time optimisation and clinical
deployment of YOLOv8 models for parasitic disease diagnos-
tics. Larger-scale studies are recommended to validate these
findings further.

CONCLUSION

YOLOv8l  outperformed other  YOLO models  in  Schistosoma
egg  detection,  excelling  in  both  bounding  box  and  mask
segmentation tasks, making it the best option when precision

and recall  are crucial.  YOLOv5m and YOLOv5x provided a
good  balance  of  accuracy  and  efficiency,  making  them  suit-
able for assisting histopathologists. Smaller models showed
limitations, reinforcing the advancements in the architecture
of YOLO. The model selection should, therefore, be based on
clinical  requirements  and  computational  constraints,
supporting  AI-assisted  diagnostics  in  histopathology.
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