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ABSTRACT

Objective: To assess the accuracy and clinical applicability of YOLO-based segmentation models for detecting Schistosoma eggs in
urinary bladder histopathology slide images, focusing on both bounding box and mask segmentation tasks.

Study Design: A descriptive, cross-sectional study.

Place and Duration of the Study: Artificial Intelligence Technology Centre, National Centre for Physics, Islamabad, Pakistan, from
September to November 2024.

Methodology: A high-quality dataset was compiled using histopathological slides obtained from real patient samples available on the
open-source platform PathPresenter. All images were meticulously annotated by expert histopathologists. The dataset included 681
images containing 2,751 schistosomes, divided into 476 training images (1,932 schistosomes), 136 validation images (539 schisto-
somes), and 69 testing images (280 schistosomes). Data pre-processing techniques were applied to optimise the quality of training and
evaluation datasets. Multiple YOLO-based segmentation models, such as YOLOv5, YOLOv8, YOLOv9, and YOLOv11 variants
(n/s/m/l/x/c/e), were trained and evaluated for both bounding box and mask detection. Model performance was evaluated using preci-
sion, recall, F1 score, mean Average Precision at 50% Intersection over Union (loU; mAP50), and mAP across 50 to 95% loU (mAP50-95)
for both bounding box and mask segmentation tasks.

Results: Among the models, YOLOv8I demonstrated the highest diagnostic accuracy, achieving an F1 score of 95.09 and a mAP50 of
96.8 for bounding box detection. For mask detection, it attained an F1 score of 94.19 and an mAP50 of 96.2. YOLOv5m and YOLOv5x
also performed well, balancing accuracy with computational efficiency. Smaller models exhibited limitations in sensitivity and precision.
Conclusion: YOLO-based segmentation models exhibit strong potential for automated detection of schistosomiasis in urinary bladder

histopathology images. However, future large-scale validation studies on bigger datasets are required for further confirmation.
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INTRODUCTION

Schistosomiasis is a chronic tropical parasitic disease caused
by Schistosoma trematode blood flukes, affecting over 700
million people across 78 countries, primarily in low-and middle-
income countries.”” Conventional microscopy remains the
standard for detecting S. haematobium infection through
egg identification and quantification in stool/urine samples.’
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However, this method is labour-intensive, expertise-dependent,
and requires laboratory infrastructure, limiting its use in
resource-poor areas. Advanced techniques such as real-time
PCR and lateral flow tests offer higher sensitivity or specificity
butfacesimilarinfrastructure constraints.>*

Schistosomiasis presentsin urinary bladder biopsies as charac-
teristic oval eggs with terminal spines, typically surrounded by
granulomatous inflammation, fibrosis, or calcification.’ Chronic
infection may resultin complications such as bladder fibrosis,
hydronephrosis, and increased squamous cell carcinoma.
Early identification enables timely treatment and helps prevent
severe long-term complications.*® Automated digital micro-
scopes integrated with Al algorithms offer customisable
tools for schistosomiasis diagnosis.”® Recent studies have
validated their diagnostic accuracy for S. haematobium,
reporting sensitivity ranging from 32 to 91% compared to
conventional microscopy.’ A two-stage deep learning frame-
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work achieved 93.75% sensitivity, 93.94% specificity, and
93.75% precision.'®

Traditional diagnostic methods in resource-limited areas are
slow and error-prone. This study used YOLO-based segmenta-
tion models to precisely outline egg locations. By leveraging
pathologist-annotated data, the research aimed to provide a
fast, accurate, and practical solution to assist pathologists,
reduce their workload, and enable timely and consistent diag-
noses.

METHODOLOGY

This study was conducted at the Artificial Intelligence Tech-
nology Centre, National Centre for Physics, Islamabad,
Pakistan, from September to November 2024. Ethical approval
was exempted (RefNo.2025-7717-23671),and the study was
not funded. A systematic approach was used to detect
schistosomiasis using YOLO-based segmentation models,
whichisadeeplearning-based object detection framework that
detects and classifies objects in images at high speed by
running images in one pass and dividing them into gridded
sections to make predictions of bounding boxes and class
probabilities simultaneously. It is highly accurate and efficient
indeeplearning-based helminth egg detection.'*"

Schistosomes have a complex and variable morphology,
including irregular shapes and clustering patterns in tissue
sections. Therefore, segmentation models that divideanimage
into semantically meaningful parts offer greater precision than
standard object detection methods, making them more suit-
able for high-throughput histopathological analysis. Detection
models are faster, but due to overlapping parasites and much
larger computing requirements, these models have become
lessuseful.

For dataset preparation, histopathological images obtained
from PathPresenter, an open-source pathology database, with
resolutions of 1200 x 1600, 1600 x 1200, and 1860 x 890 were
included in the study. The manual annotation of Schistosoma
eggs was performed by two histopathologists from United
Medical and Dental College (UMDC) and Jinnah Sindh Medical
University (JSMU) to ensure accuracy and clinical relevance.
Annotation refinement was carried out using LabelMe. To
ensure diagnostic reliability, ambiguous images that could not
be confidently annotated, those of poor diagnostic quality, and
those not meeting therequiredresolution standards forannota-
tion were excluded from the dataset. Data pre-processing tech-
niques included normalisation, sharpening, resizing, and histo-
gramequalisationtoenhanceimage quality for Altraining. Data
augmentation techniques—such as flipping, rotation, Mix-Up,
Copy-Paste, and mosaic transformations—were applied to 40%
ofthetraining settoimprove model generalisation. The dataset
was divided into training (70%), validation (20%), and testing
(10%) subsets. Table I(A) shows the data distribution, confirming
theintegrity and representativeness ofthese splits.

The YOLO versions used in the study were YOLOV5, YOLOvVS,
YOLOV9, and YOLOv11. Hyperparameters were optimised to

enhance segmentation accuracy and computational efficiency.
TheimportanthyperparametersareshowninTablel(B).

Training of allthe models was conducted onan NVIDIARTX 4060
GPU (8GB VRAM) with an Intel Core i9-14900KF processor and
64 GBRAM by the author, Agsa Abu Bakar, from AlTec. This hard-
ware configuration ensured the smooth handling of the huge
computational demands posed by this big dataset and
resource-intensive training processes.

To evaluate the accuracy and effectiveness of the YOLO models
for Schistosoma egg detection, several statistical metrics were
applied: precision, which measures the proportion of correctly
identified positive detections; recall, whichassessesthe propor-
tion of actual positives correctly detected; and the F1 score,
which represents the harmonic mean of precision and recall,
providing a measure of balanced performance. Additionally,
mean Average Precision (mAP) at 50% Intersection over Union
(loU; mAP50) and mAP across 50 to 95% loU (mAP50-95) were
usedtoquantifydetectionqualityacrossvaryingoverlapthresh-
olds. These metrics were calculated for both bounding box and
mask segmentation tasks to comprehensively assess model
performance. Confusion metrics were also calculated to
support performance evaluation. True positives (TP) were
regions correctly identified as eggs, true negatives (TN) were
correctly identified non-egg regions, false positives (FP) were
regions wrongly classified as eggs, and false negatives (FN)
were actual eggs missed by the model. These formed the basis
for computing precision, recall, F1-score, and related metrics.
The model performance was assessed using standard evalua-
tion metrics for object detection and segmentation tasks. Preci-
sionwas calculated as theratio of true positive detections to the
total number of positive predictions (TP /(TP + FP)), while recall
measured the proportion of actual positive cases correctly iden-
tified (TP/(TP+FN)). TheF1lscore provided abalanced measure
of precision and recall, calculated as 2 x (Precision x Recall) /
(Precision + Recall). Additionally, the mAP was computed
across loU thresholds from 0.5 t0 0.95, calculatedas (1/10) x 2
(AP atloUfrom 0.5t00.95), providing a comprehensive assess-
ment of model performance across different detection confi-
dencelevels.

Tablel: (A) Datasplit(B) Hyperparameterused during thetraining.

Dataset split Images Schistosomes
Training 476 1,932
Validation 136 539
Testing 69 280
Total 681 2,751
Hyperparameters Values

Task Segment

Epochs 100

Batch 8(n,s,mc)/4(l,x e)
Workers 8

Optimiser AdamW

Seed 0

Deterministic True

Single_cls False

Learning rate (Lr) 0.002

Momentum 0.9

Weight_decay 0.0005

Warmup_epochs 3

Warmup_momentum 0.8

Warmup_bias_Ir 0.1

Mask ratio 4
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Table II: Evaluation metrics of various YOLO models.

Models Box (P) Box (R) Box Box Box Mask Mask (R) Mask Mask Mask
(F1 score) (mAP50) (mAP50-95) (P) (F1 score) (mAP50) (mAP50-95)

YOLOv5n 92.7 86 89.22 92.4 72 92.7 86 89.22 92.6 68
YOLOv5s 91.7 88.1 89.86 93.5 75.2 92.3 87 89.57 92.7 71.8
YOLOvV5m 91.2 93.2 92.19 96.9 80.2 91.2 93.2 92.19 96.9 75.7
YOLOVSI 87.7 90 88.84 95.1 79.5 87.7 90 88.84 94.1 75.7
YOLOv5x 93.8 90.4 92.07 95.7 77.4 93.2 92 92.6 96.6 75.2
YOLOv8n 91.6 87.3 89.4 94.8 74.9 89.5 85.4 87.4 93.2 70
YOLOv8s 90.5 86 88.19 93 76.3 90.5 86 88.19 93.1 72.6
YOLOv8m 92.4 90 91.18 93.2 78.1 89.7 93 91.32 93.9 72.7
YOLOvaI 94.2 96 95.09 96.8 81.1 93.4 95 94.19 96.2 77
YOLOv8x 93.3 85 88.96 92.9 76.8 93.3 85 88.96 93.8 73
YOLOv9c 81 91 85.71 92.7 73.7 81 91 85.71 92.5 69.7
YOLOv9e 91.3 88 89.62 94.3 74.4 91.3 88 89.62 94.1 70.1
YOLOv1ln 84.2 90.5 87.24 94 72.5 83.3 89.5 86.29 93.2 68.4
YOLOv1ls 92 90 90.99 92.5 76 92 90 90.99 92.5 70.8
YOLOv11lm 91.2 93 92.09 95.6 77.4 90.8 92 91.4 94.9 74
YOLOv11l 89.2 91.2 90.19 95.2 71.7 89.2 91.2 90.19 94.8 72.6
YOLOv11x 86.4 92 89.11 92.7 75.1 86.4 92 89.11 93.1 69.7
P: Precision; R: Recall; mAP: Mean average precision.
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Figure 1: (A) F1 score of different variants of YOLO. (B) mAP@50 of
different variants of YOLO. (C) mAP@50-95 of different variants of
YOLO on the schistosomiasis dataset.

Model selection was determined based on validation scores
derived from the unique validation set (136 images, 539
schistosomes), where models were ranked by F1 score and
MAP50 to identify the best performer for Schistosoma
eggs detection. The differences were calculated based on
confusion metrics (TP, TN, FP, and FN) from the validation
set, with the final evaluation confirmed on the testing set
(69 images, 280 schistosomes). Statistical analysis was
performed using Python-based tools, specifically the SciPy
library and NumPy for metric calculations, ensuring the
robust and reproducible evaluation of model effectiveness.

Training time varied across YOLO versions. YOLOv5n
trained the fastest (25.38 minutes), while YOLOv5x took the
longest (63.96 minutes). YOLOv8Bn was the most efficient
(8.58 minutes), and YOLOv8x took 71.52 minutes, whereas
YOLOv9e required the longest training time (81.54
minutes). For the YOLOv11 series, YOLOv11ln took 9.18
minutes, and YOLOv11x finished training in 69.96 minutes.
The smaller models trained faster due to fewer parameters,
and the complex models required extended training
periods, highlighting the evolution of YOLO architecture and
demonstrating improvements in processing efficiency while
maintaining the model complexity.

The result of the segmentation task in terms of perfor-
mance of various YOLO models for the Schistosoma egg
detection is shown in Table Il. The performances within
each category were compared in both bounding box and
mask metrics with respect to precision, recall, and F1 score
(Figure 1A), mAP@50 (Figure 1B), and mAP@50-95 (Figure
1C). Various YOLO model versions and their differences
about scale and higher-performing architectures have been
compared (Figure 1C). The model works perfectly with a
few FP, which can further be reduced by tightening the
threshold.

Losses for bounding box, segmentation, classification, and
distribution focal loss consistently declined, as shown in
Figure 2A. Validation exhibited a similar trend, confirming
effective generalisation to the new data without overfitting
and ensuring reliable performance on new data. Precision,
recall, and mAP demonstrated a successive increase per
epoch. The final mAP@0.5 and mAP@0.5-0.95 values indi-
cated excellent detection performance. This progression
showed robust feature learning and effective performance
in both detection and classification tasks. YOLOv8I achieved
a high mAP@0.5 of 0.922 for detecting Schistosoma eggs
(Figure 2B), demonstrating excellent diagnostic accuracy.
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The precision-recall curve confirmed a strong balance between
sensitivity and specificity, minimising FP while maintaining high
recall. For bounding box detection (Figure 3A), larger models
outperformed smaller ones, with YOLOv8I leading at an F1 score
of 95.09 and mAP50 of 96.8 (Figures 1A, B). YOLOv5m also
performed well (F1 score: 92.19, mAP50-95: 80.2, Figure 1C). In
contrast, YOLOv9c and YOLOv11n, due to their smaller size, had
lower F1 scores of 85.71 and 87.24, respectively (Figure 1A).

Mask detection, a more complex task (Figure 3B), also
favoured YOLOvSI (F1: 94.19, mAP50: 96.2, Figures 1A, B). It is
the identification and localisation of specific regions in an
image, highlighting regions of interest such as parasites, cells,
or abnormalities. YOLOv5m followed closely (F1: 92.19,

Figure 2: (A) Training results for YOLOv8I. (B) Precision-recall curve for YOLOv8I training.

mAP50: 96.9). Larger models, such as YOLOv8x and YOLOv8m,
maintained strong performance (F1: 92.6 and 91.32, respec-
tively). However, smaller models (YOLOv11ln and YOLOv9c)
showed reduced accuracy (Figure 1A) likely due to fewer
parameters, which restrict their ability to learn complex
features necessary for future learning. When YOLOv8I was
tested on unseen histopathology slides (Figure 3C), it main-
tained robust performance, highlighting its potential for the
real-world histopathological applications.

DISCUSSION

Schistosomiasis remains a major parasitic disease, particu-
larly in endemic regions where conventional microscopy is
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labour-intensive and resource-dependent.™ Al-based tools
offer an alternative diagnostic approach, improving both
efficiency and accuracy.””” This study evaluated YOLO-
based segmentation models for detecting Schistosoma eggs
in histopathological images, with YOLOv8I demonstrating the
highest accuracy.

This study used an open-source dataset with expert histo-
pathologist annotations. YOLOv8I achieved an F1 score of
95.09 and mAP@50 of 96.8 in bounding box detection,
outperforming earlier models. Previous studies using
YOLOv5m reported an F1 score of 92.4 and mAP@50 of
90.8,"” while faster regional-based convolutional neural
network (R-CNN) achieved a mAP@50 of 88.7." The superior
feature extraction and recall accuracy of YOLOvSI
contributed to its improved performance.

For mask segmentation, YOLOv8I achieved an F1 score of
94.19 and mAP@50 of 96.2, surpassing YOLOvV5 (F1 of 89.5)
in helminth segmentation. The smooth decline in training
and validation loss indicated effective optimisation and
generalisation on unseen data, confirming its clinical relia-
bility, similar to the trends reported in other studies on para-
sitic egg-identification using a convolution and attention
network.****

Previous studies have shown the potential of computational
techniques on digital images.'*" Colley et al. highlighted that
the ability to diagnose schistosomiasis rapidly and accu-
rately is crucial in endemic regions, where delayed treat-
ment often results in severe morbidity."® Another study
supported the need for advanced, automated tools, such as
Al, to complement traditional diagnostics, which can be
slow and resource-intensive in endemic areas.” The CNN
and deep learning models, such as YOLO, can offer a faster
and reliable solution by automating the detection of parasitic
eggs in histopathological images, thus significantly improv-
ing the diagnostic speed and accuracy.'****Wang et al. high-
lighted that YOLOvV5 could improve in accuracy and robust-
ness when combined with other Al techniques.” The findings
of this study establish YOLOvS8I as a highly accurate model for
Schistosoma egg detection in histopathological images. Its
improved performance over previous models suggests poten-
tial integration into histopathology workflows. The combina-
tion of detection and segmentation in Al-based diagnostic
models presents a significant leap forward in the diagnosis of
parasitic diseases, as highlighted by another study.** Future
research should focus on real-time optimisation and clinical
deployment of YOLOv8 models for parasitic disease diagnos-
tics. Larger-scale studies are recommended to validate these
findings further.

CONCLUSION

YOLOv8I outperformed other YOLO models in Schistosoma
egg detection, excelling in both bounding box and mask
segmentation tasks, making it the best option when precision

and recall are crucial. YOLOv5m and YOLOv5x provided a
good balance of accuracy and efficiency, making them suit-
able for assisting histopathologists. Smaller models showed
limitations, reinforcing the advancements in the architecture
of YOLO. The model selection should, therefore, be based on
clinical requirements and computational constraints,
supporting Al-assisted diagnostics in histopathology.
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