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ABSTRACT

Objective: To compare six machine learning models for predicting early neurological deterioration (END) after intravenous rt-PA
thrombolysis in acute ischaemic stroke, and to develop an interpretable clinical tool.

Study Design: Observational study.

Place and Duration of the Study: Department of Neurology, Benxi Central Hospital, Benxi, China, from January 2021 to December
2023.

Methodology: All consecutive adults receiving standard-dose rt-PA within 4.5 hours of onset were screened. END was defined as an
increase in the National Institutes of Health Stroke Scale (NIHSS) score of =4 or death within 24 hours. Thirty-two baseline variables
were collected; those showing p <0.10 on univariate analysis (NIHSS, age, fibrinogen, and hypertension) entered model construction.
An 80:20 stratified split produced training and validation cohorts. Decision tree, random forest, XGBoost, support vector classifier,
multilayer perceptron, and logistic regression were tuned by grid search with fivefold cross-validation. Discrimination (area under the
ROC curve and AUC), accuracy, sensitivity, specificity, and F1 score were calculated on the hold-out set. The best model underwent
SHapley Additive exPlanation (SHAP) analysis to visualise feature important and protective or harmful thresholds. Internal robustness
was confirmed with 1,000 bootstrap resamples.

Results: Among 209 eligible patients (END = 16, 7.7%), the XGBoost model achieved the highest discrimination (AUC 0.966), perfect
sensitivity (1.000), accuracy (0.905), and specificity (0.897). The decision tree produced the top F1 score (0.750) but lower AUC
(0.957). SHAP plots identified admission NIHSS, hypertension, age =72 years, and fibrinogen >3.2 g/L as the principal drivers of risk,
together accounting for 85 % of model weight.

Conclusion: A concise, four-variable XGBoost model reliably stratifies END risk after rt-PA, offering a transparent decision aid for clini-
cians to allocate intensified monitoring or adjunctive therapy.
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INTRODUCTION

Acute ischaemic stroke (AIS) is a major cause of high dis-
ability and mortality worldwide."” Intravenous rt-PA (recombi-
nant tissue plasminogen activator) thrombolysis is a pivotal
recanalisation treatment during the acute phase of AIS and
can improve patients’ neurological outcomes to a certain
extent.™*
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However, in clinical practice, some patients experience early
neurological deterioration (END) within 24 hours after throm-
bolysis, which is manifested as worsening of neurological
deficits relative to baseline or death.’ Previous literature has
indicated that the occurrence of END is closely associated with
poorer functional outcomes and a higher risk of death; there-
fore, rapid and accurate identification of high-risk patients
before or during the early stages of thrombolysis has become a
key focusin clinical practice.®’

Building on traditional statistical analyses or clinical scoring
systems (e.g., NIHSS, mRS, age), an increasing number of
studies in recent years have begun to explore the value of
machine learning algorithms in predicting stroke outcomes.?
Compared with traditional linear models, machine learning
techniques are more able to capture non-linear relationships
and interactions among variables, with a certain level of
predictive performance even with relatively small, hetero-
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geneous clinical datasets.*** However, the black box nature of
machine learning algorithms often leads clinicians to remain
cautious about their interpretability and reliability. Therefore,
improving model interpretability while ensuring predictive
performance hasbecomeanimportantgoalintranslationalclin-
icalresearch.

By comparing the differences in predictive performance and
interpretability among the models, this study aimed to provide
a basis forthe rapid identification of high-risk patientsin clinical
practice, reduce missed diagnoses, and enhance the moni-
toring and intervention for high-risk populations, ultimately
improvingthe overall patientoutcomes.

METHODOLOGY

Thisstudyisaretrospective analysis thatincluded patients with
AIS who underwent intravenous rt-PA thrombolytic therapy in
the Department of Neurology, Benxi Central Hospital, Benxi,
China, from January 2021 to December 2023. The inclusion
criteria included: confirmation of AIS by imaging (CT/MRI) and
clinical diagnosis, meeting the criteria for rt-PA thrombolysis
and completing the treatment, and the availability of complete
clinical data. The exclusion criteria were patients who, upon
admission, had other severe systemic or neurological diseases,
and cases with missing baseline data or incomplete key vari-
ables.

Based on the previous literature™ and clinical feasibility, END
wasdefined aseitheranincrease of =4 pointsinthe NIHSS score
from baseline within 24 hours after thrombolysis or death.
Patients meeting these criteria were assigned tothe END group,
while the remaining patients were classified as the non-END
group. Demographic data (e.g., age, gender), admission NIHSS
scores, laboratory test indicators, and outcome information
were collected for both groups. Data were subjected to routine
cleaning, missing-value imputation, one-hot encoding, and z-
scorenormalisation.

The complete dataset was randomly partitioned into training
and validation sets atan 80:20 ratio using Python’s train_test_
split function. When computational resources allowed,
five-fold or ten-fold cross-validation was further conducted
within the training set to obtain more robust hyperparameter
estimates. To compare the performance of several common
machine learning algorithms in predicting the risk of END, six
models were selected, including logistic regression, deci-
sion tree classifier, random forest, XGBoost (a representa-
tive gradient-boosting tree model), support vector machine
(SVC), and neural network—multilayer perceptron (MLP).
Within the training set, key hyperparameters (e.g., maximum
tree depth, learning rate, regularisation coefficients, and the
number of hidden-layer neurons) were tuned by grid search
(GridSearchCV) or random search (RandomisedSearchCV) in
combination with cross-validation. Because END cases were
relatively scarce, class imbalance was mitigated by adjusting
the class_weight parameterduring training or by applying over-

sampling techniques suchas SMOTE toimprovelearning perfor-
manceontheimbalanced dataset.

On the validation set, the predictions of each model were
compared with the actual group assignments. Primary evalua-
tion metrics included area under the ROC curve (AUC)—overall
discriminative ability—sensitivity (recall) and specificity, accu-
racy, F1 score, precision-recall (P-R) curve, and area under the
precision-recall curve (AUPRC), which provide complementary
information under class-imbalance conditions. The optimal
model was selected by synthesising the above indicators.

After identifying the best-performing model, further visualisa-
tion and interpretability analyses were conducted. Confusion
matrix was generated to display true positives, false positives,
true negatives, and false negatives in the validation set,
therebyquantifyingmisclassification patterns. SHAPinterpreta-
bility analysis, using Shapley additive explanations, was
appliedtovisualise and explain the contribution and direction of
key features, thereby offering clinically relevant insights into
high-riskfactors.

All data preprocessing, statistical analyses, and model training
were carried out in Python 3.10 (Anaconda 2024.02 distribu-
tion). Machinelearningalgorithms wereimplemented with scik-
it-learn 1.4.0 and XGBoost 2.0.3; statistical tests and confi-
dence-interval computations were performed with SciPy 1.12.0
and statsmodels 0.15.0.

RESULTS

The overall frequency of END in this cohort study was relatively
low. After data preprocessing and feature selection, statistical
analysis showed significant differences between the END and
non-END groups in admission NIHSS score, hypertension, age,
andfibrinogenlevel (p <0.05). These fourvariables were, there-
fore,incorporated aspredictivefeatures (Tablel).

On the test set, six machine learning algorithms were evalu-
ated. Although the decision tree classifier excelled in accuracy,
specificity, and F1 score, the primary optimisation metric was
AUC; therefore, XGBoost was ultimately selected as the
optimal model. The XGBoost model achieved the highest AUC
while maintaining a high sensitivity, thereby minimising missed
END cases (Figure 1 showed that its ROC curve enclosed the
largest area). P-R curves (Figure 2) further indicated that
XGBoost and the MLP striked the best balance between preci-
sion and recall, a desirable property for datasets with imbal-
anced positive and negative classes. Taken together, these
findings demonstrated that XGBoost offered the strongest
overall discriminative capability, effectively balancing detec-
tion rate, and false-positive rate. Therefore, it is the most suit-
able modelforpredicting END inthis study (Tablell).

Among the six algorithm models, the XGBoost model achieved
the highest AUC on the validation set (0.966) and was, there-
fore, selected as the optimal predictor. Its key performance
metrics were: accuracy 0.905, recall (sensitivity) 1.000,
specificity 0.897, precision 0.429, and F1 score 0.600.
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Table I: Comparison of the clinical characteristics between the END and non-END groups.

Variables END Group Non-END Group X/t p-values
(n = 16) (n = 193)
TOAST classification
LAA 12 111 4.578 0.205
CE 2 23
SVo 1 55
ub 1 4
Pneumonia (comorbidity) 6 37 3.038 0.081
Infarct territory
AC 12 123 1.080 0.583
PC 1 28
AC+PC 3 42
Alcohol consumption 5 69 0.013 0.909
Smoking 11 123 0.221 0.638
Moderate-to-severe arterial stenosis 11 113 0.639 0.424
Atrial fibrillation 3 25 0.432 0.511
Diabetes mellitus 3 47 0.257 0.612
Hypertension 14 101 7.399 0.007
Gender (male / female) 11/5 139/54 0.077 0.782
Age (years) 69.312 = 9.250 63.725 = 10.386 2.299 0.034
White blood cell count (x10°/L) 8.046 * 2.576 7.799 + 2.539 0.369 0.717
Platelet count (x10°%L) 253.188 + 136.321 222.193 + 58.444 0.903 0.38
Direct bilirubin (umol/L) 2.794 + 1.518 3.292 + 2.682 -1.167 0.255
Albumin (g/L) 41.506 + 2.709 40.783 + 3.938 0.983 0.337
ALT(U/L) 21.75 £ 12.091 20.743 £ 10.191 0.323 0.75
Alkaline phosphatase (U/L) 90.500 + 19.980 84.270 + 22.642 1.185 0.251
Potassium (mmol/L) 4.119 + 0.513 3.908 + 0.388 1.606 0.127
Admission NIHSS score 9.812 + 5.540 6.415 + 5.152 2.37 0.03
Prothrombin activity (%) 110.375 + 15.491 107.818 + 15.066 2.977 0.009
INR 0.956 + 0.079 0.972 £ 0.090 0.636 0.533
Prothrombin time (s) 12.800 + 0.849 12.904 + 0.892 -0.745 0.465
Activated partial thromboplastin time (s) 33.481 = 3.104 33.662 *+ 3.26 -0.47 0.644
Fibrinogen (g/L) 2.932 £ 0.472 3.274 £ 0.909 -2.256 0.018
Thrombin time (s) 17.162 + 0.823 17.333 £ 1.776 -0.706 0.486
D-dimer (mg/L) 0.792 + 0.827 0.799 + 1.637 -0.705 0.487
Creatinine (umol/L) 77.688 = 19.12 75.575 = 20.006 -0.025 0.98
Urea (mmol/L) 6.996 + 1.819 6.131 + 1.615 0.423 0.677

AC: Anterior circulation; PC: Posterior circulation; LAA: Large artery atherosclerosis; CE: Cardioembolism; SVO: Small vessel occlusion; UD: Undetermined aetiology.
Note: p-value calculation: continuous variables were compared using an independent-samples t-test (with Welch’s correction when variances were unequal) or a
Mann-Whitney U test if non-normally distributed; categorical variables were analysed using Pearson’s x’ test (or Fisher’s exact test when any expected cell count <5).

Table II: Comparison of the predictive accuracy on the validation set for six machine learning models.

Models AUC Accuracies Sensitivities Specificities Precisions F1 scores
Logistic regression 0.914 0.738 1.000 0.718 0.214 0.353
Decision tree 0.957 0.952 1.000 0.949 0.600 0.750
Random forest 0.962 0.901 0.667 0.923 0.400 0.500
XGBoost 0.966 0.905 1.000 0.897 0.429 0.600
Support vector machine 0.846 0.833 0.667 0.846 0.250 0.364
Neural network (MLP) 0.957 0.905 0.667 0.923 0.400 0.500

Table Ill: Confusion matrix of the optimal XGBoost predictive model.

Actual / Predicted Predicted END (+) Predicted non-END (-)

Actual END (+) 3(TP) 0 (TN)
Actual non-END (-) 4 (FP) 35 (TN)

TP: True positive; FP: False positive; TN: True negative.

The optimal hyperparameters were a learning rate of 0.1
and a max_depth of 8. The confusion matrix (Table III)
showed FN = 0, indicating no false negatives thereby a 100
% detection rate for END cases. There were four false posi-
tives, suggesting that clinical judgment is required to reduce
over-alerts. The SHAP plot (Figure 3) provided a global inter-
pretation of the XGBoost model. The beeswarm diagram
ranked the top three contributors as admission NIHSS score,
hypertension, and age. Admission NIHSS had the highest
mean SHAP value, indicating that baseline neurological
deficit was the dominant factor influencing END. Hyper-

tension, elevated fibrinogen, and older age contribute posi-
tively, further increasing the risk of END.

DISCUSSION

Developing machine learning models to predict END after
intravenous rt-PA thrombolysis offers several clinical advan-
tages. First, END generally occurs within 24 hours of throm-
bolysis and is a pivotal determinant of functional outcome in
patients with AIS. Early identification of high-risk individuals
during this window enables clinicians to intensify neurolog-
ical monitoring, repeat neuroimaging promptly, and adjust
blood-pressure control, anticoagulation, and other thera-
peutic strategies, thereby reducing secondary injury.'**
Second, hospital resources for AIS are limited, whereas END is
relatively uncommon (= 5 %-30 %).
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Figure 1: ROC curves for the six machine learning models.
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Figure 3: SHAP summary plot of the XGBoost model.

The traditional approach of universally intensive monitoring is
therefore inefficient. Risk stratification allows monitoring
resources to be concentrated on patients predicted to be at
high risk, facilitating precision management.** Third, compared
with linear regression or single-score systems, machine
learning models can process multidimensional clinical data
and capture non-linear interactions, offering greater sensi-
tivity and better generalisability for individualised prediction.
Interpretability techniques such as SHAP further clarify
each feature’s relative contribution to outcomes, enhanc-
ing the model’s acceptability in clinical decision-making.”*®
Finally, visual risk-assessment tools improve physician-
patient communication, helping patients and their families
understand their own risk and adhere to subsequent treat-
ment and rehabilitation plans. Collectively, these benefits
may lower disability and mortality rates, shorten hospital
stays, and reduce healthcare costs.

Among the six algorithm models in this study, the linear
logistic regression model reached 100% sensitivity with only
a few parameters, yet its inability to capture non-linear and
interaction effects kept precision at just 0.214, resulting in a
high false-positive rate. Decision tree models are intuitive
and easily interpreted; however, a single-tree structure is
prone to over-fitting, so their generalisation performance
was unstable. The ensemble random forest lowered variance
through bagging and achieved an AUC of 0.962; however, in
the presence of class imbalance, it leaned toward the
majority class, leaving recall at 0.667. The kernel-based SVC
handles high-dimensional features well; however, with the
present data size, it required long training times and was
extremely sensitive to hyperparameters, yielding an AUC of
only 0.846. Although a deep MLP can, in theory, approximate
any complex function, it requires much larger samples to
avoid overfitting; consequently, its recall likewise remained
at 0.667.

By contrast, XGBoost finely fits residuals via gradient boosting
while introducing L1/L2 regularisation in each iteration to
curb overfitting; combined with class-weighting mechanisms
such as scale_pos_weight, it is naturally suited to minority-class
problems, such as END. On the validation set, it delivered
the highest AUC (0.966), achieved 100% recall, and limited
false positives to four—striking a balance between zero
missed diagnoses and an acceptable false-alarm rate. In
addition, XGBoost automatically handles missing values,
trains rapidly, and integrates seamlessly with SHAP,
enabling individualised risk attribution without compromising
clinical interpretability. Taken together, its overall perfor-
mance, computational efficiency, and clinical usability
surpassed those of the other models, establishing XGBoost
as the optimal predictive tool in this study.

A closer examination of XGBoost's performance in the
present setting shows that its advantages extend beyond
leading metric values; they arise from a strong match
between the algorithm’s design and the characteristics of
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clinical data. First, XGBoost employs a gradient-boosting
framework that chains a series of weak decision trees in a
residual-learning sequence, with each new tree fitting the
hard samples left by the previous model. This layer-by-layer
error-correction mechanism continually strengthens the
recognition of the minority END class in a task that is highly
imbalanced and limited in sample size, whereas bagging
methods tend to dilute learning focus."”'® Second, the objec-
tive function incorporates both first- and second-order gradi-
ents and embeds L1/L2 regularisation, accelerating conver-
gence while effectively preventing overfitting. As a result, an
AUC of 0.966 and 100% recall were achieved on a dataset of
only 209 patients.” Third, XGBoost’s automatic missing-value
branching strategy allows each tree to assign a default direc-
tion for missing records, avoiding information loss and impu-
tation error that are common in clinical data. Combined with
parameters—such as scale_pos_weight, the model maintains
zero missed diagnoses while keeping false positives within
an acceptable range.”** Fourth, built-in column subsampling
and parallel computation make training far faster than tradi-
tional boosting or deep networks, facilitating rapid model
updates within real-time clinical workflows. Its incremental
learning capability also supports continual fine-tuning as
new patient data accrue, preserving model freshness.”>*
Crucially, the tree structure integrates seamlessly with
SHAP, enabling global and individual quantification of each
feature’s marginal contribution and dispelling black-box
concerns. The high-impact features identified (admission
NIHSS score, age, fibrinogen, and hypertension) coincide
with established stroke risk factors, further enhancing the
model’s credibility and generalisability.**** In sum, XGBoost
surpasses the other models across four dimensions—
algorithmic mechanism, data adaptability, computational
efficiency, and interpretability—making it the ideal choice for
post-thrombolysis END risk stratification and laying a solid
foundation for future clinical decision-support systems that
integrate multimodal data such as imaging and genomics.

Although XGBoost achieved the best performance in this
study, its use still has notable limitations. Being based on
single-centre, retrospective data with a limited sample size,
the model is vulnerable to selection bias. The feature set
was restricted—only admission-time clinical variables were
included; imaging, haemodynamic, and genetic data were
not integrated, leaving some END-triggering mechanisms
under-represented. Numerous hyperparameters also
require manual tuning, potentially adding maintenance
overhead during clinical deployment. Interpretability
remains incomplete: while SHAP helps, it offers limited
insight into temporal patterns or latent causal relation-
ships.

Future work should validate generalisability in large, multi-
center, and prospective cohorts, streamline updates via auto-
mated hyperparameter optimisation and incremental learning,
and incorporate multimodal data and causal- inference frame-

works to further improve predictive accuracy, interpreta-
bility, and clinical usability.

CONCLUSION

Using four key admission variables—NIHSS score, age,
fibrinogen level, and hypertension—for predicting END after
rt-PA thrombolysis, XGBoost proved to be the optimal model,
achieving the highest AUC (0.966), 100 % recall, and strong
interpretability. It thus offers a reliable tool for early risk stratifi-
cation and precise allocation of monitoring resources in
rt-PA-treated patients, while also laying a methodological foun-
dation for multimodal, continuously updated stroke-alert
systems.
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