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ABSTRACT
Objective: To compare six machine learning models for predicting early neurological deterioration (END) after intravenous rt-PA
thrombolysis in acute ischaemic stroke, and to develop an interpretable clinical tool.
Study Design: Observational study.
Place and Duration of the Study: Department of Neurology, Benxi Central Hospital, Benxi, China, from January 2021 to December
2023.
Methodology: All consecutive adults receiving standard-dose rt-PA within 4.5 hours of onset were screened. END was defined as an
increase in the National Institutes of Health Stroke Scale (NIHSS) score of ≥4 or death within 24 hours. Thirty-two baseline variables
were collected; those showing p <0.10 on univariate analysis (NIHSS, age, fibrinogen, and hypertension) entered model construction.
An  80:20  stratified  split  produced  training  and  validation  cohorts.  Decision  tree,  random forest,  XGBoost,  support  vector  classifier,
multilayer perceptron, and logistic regression were tuned by grid search with fivefold cross-validation. Discrimination (area under the
ROC curve and AUC), accuracy, sensitivity, specificity, and F1 score were calculated on the hold-out set. The best model underwent
SHapley Additive exPlanation (SHAP) analysis to visualise feature important and protective or harmful thresholds. Internal robustness
was confirmed with 1,000 bootstrap resamples.
Results: Among 209 eligible patients (END = 16, 7.7%), the XGBoost model achieved the highest discrimination (AUC 0.966), perfect
sensitivity  (1.000),  accuracy  (0.905),  and  specificity  (0.897).  The  decision  tree  produced  the  top  F1  score  (0.750)  but  lower  AUC
(0.957). SHAP plots identified admission NIHSS, hypertension, age ≥72 years, and fibrinogen >3.2 g/L as the principal drivers of risk,
together accounting for 85 % of model weight.
Conclusion: A concise, four-variable XGBoost model reliably stratifies END risk after rt-PA, offering a transparent decision aid for clini-
cians to allocate intensified monitoring or adjunctive therapy.
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INTRODUCTION

Acute ischaemic stroke (AIS)  is  a  major  cause of  high dis-
ability and mortality worldwide.1,2 Intravenous rt-PA (recombi-
nant tissue plasminogen activator) thrombolysis is a pivotal
recanalisation treatment during the acute phase of AIS and
can  improve  patients’  neurological  outcomes  to  a  certain
extent.3,4
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However, in clinical practice, some patients experience early
neurological deterioration (END) within 24 hours after throm-
bolysis,  which  is  manifested  as  worsening  of  neurological
deficits relative to baseline or death.5 Previous literature has
indicated that the occurrence of END is closely associated with
poorer functional outcomes and a higher risk of death; there-
fore,  rapid  and  accurate  identification  of  high-risk  patients
before or during the early stages of thrombolysis has become a
key focus in clinical practice.6,7

Building on traditional statistical analyses or clinical scoring
systems  (e.g.,  NIHSS,  mRS,  age),  an  increasing  number  of
studies  in  recent  years  have  begun to  explore  the  value  of
machine learning algorithms in predicting stroke outcomes.8

Compared with traditional  linear models,  machine learning
techniques are more able to capture non-linear relationships
and interactions among  variables,  with  a  certain  level  of
predictive  performance even with  relatively  small,  hetero-
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geneous clinical datasets.9,10 However, the black box nature of
machine learning algorithms often leads clinicians to remain
cautious about their interpretability and reliability. Therefore,
improving  model  interpretability  while  ensuring  predictive
performance has become an important goal in translational clin-
ical research.

By comparing the differences in predictive performance and
interpretability among the models, this study aimed to provide
a basis for the rapid identification of high-risk patients in clinical
practice,  reduce  missed  diagnoses,  and  enhance  the  moni-
toring  and  intervention  for  high-risk  populations,  ultimately
improving the overall patient outcomes.

METHODOLOGY

This study is a retrospective analysis that included patients with
AIS who underwent intravenous rt-PA thrombolytic therapy in
the Department of Neurology, Benxi Central Hospital, Benxi,
China,  from January 2021 to  December  2023.  The inclusion
criteria included: confirmation of AIS by imaging (CT/MRI) and
clinical diagnosis, meeting the criteria for rt-PA thrombolysis
and completing the treatment, and the availability of complete
clinical data. The exclusion criteria were patients who, upon
admission, had other severe systemic or neurological diseases,
and cases with missing baseline data or incomplete key vari-
ables.

Based on the previous literature11 and clinical feasibility, END
was defined as either an increase of ≥4 points in the NIHSS score
from  baseline  within  24  hours  after  thrombolysis  or  death.
Patients meeting these criteria were assigned to the END group,
while the remaining patients were classified as the non-END
group. Demographic data (e.g., age, gender), admission NIHSS
scores,  laboratory  test  indicators,  and  outcome  information
were collected for both groups. Data were subjected to routine
cleaning, missing-value imputation, one-hot encoding, and z-
score normalisation.

The complete dataset was randomly partitioned into training
and validation sets at an 80:20 ratio using Python’s train_test_
split  function.  When  computational  resources  allowed,
five‑fold  or  ten‑fold  cross‑validation  was  further  conducted
within the training set to obtain more robust hyperparameter
estimates. To compare the performance of several common
machine learning algorithms in predicting the risk of END,  six
models  were  selected,  including  logistic  regression,  deci-
sion  tree  classifier, random forest, XGBoost (a representa-
tive  gradient‑boosting tree model), support vector machine
(SVC),  and  neural  network—multilayer  perceptron  (MLP).
Within the training set, key hyperparameters (e.g., maximum
tree depth, learning rate, regularisation coefficients, and the
number of hidden‑layer neurons) were tuned by grid search
(GridSearchCV) or random search (RandomisedSearchCV) in
combination with cross‑validation. Because END cases were
relatively scarce, class imbalance was mitigated by adjusting
the class_weight parameter during training or by applying over-

sampling techniques such as SMOTE to improve learning perfor-
mance on the imbalanced dataset.

On  the  validation  set,  the  predictions  of  each  model  were
compared with the actual group assignments. Primary evalua-
tion metrics included area under the ROC curve (AUC)—overall
discriminative ability—sensitivity (recall) and specificity, accu-
racy, F1 score, precision-recall (P-R) curve, and area under the
precision-recall curve (AUPRC), which provide complementary
information  under  class‑imbalance  conditions.  The  optimal
model was selected by synthesising the above indicators.

After identifying the best‑performing model, further visualisa-
tion and interpretability analyses were conducted. Confusion
matrix was generated to display true positives, false positives,
true  negatives,  and  false  negatives  in  the  validation  set,
thereby quantifying misclassification patterns. SHAP interpreta-
bility  analysis,  using  Shapley  additive  explanations,  was
applied to visualise and explain the contribution and direction of
key features, thereby offering clinically relevant insights into
high‑risk factors.

All data preprocessing, statistical analyses, and model training
were carried out in Python 3.10 (Anaconda 2024.02 distribu-
tion). Machine learning algorithms were implemented with scik-
it-learn  1.4.0  and XGBoost  2.0.3;  statistical  tests  and confi-
dence-interval computations were performed with SciPy 1.12.0
and  statsmodels  0.15.0.

RESULTS

The overall frequency of END in this cohort study was relatively
low. After data preprocessing and feature selection, statistical
analysis showed significant differences between the END and
non‑END groups in admission NIHSS score, hypertension, age,
and fibrinogen level (p <0.05). These four variables were, there-
fore, incorporated as predictive features (Table I).

On the test set, six machine learning algorithms were evalu-
ated. Although the decision tree classifier excelled in accuracy,
specificity, and F1 score, the primary optimisation metric was
AUC;  therefore,  XGBoost  was  ultimately  selected  as  the
optimal model. The XGBoost model achieved the highest AUC
while maintaining a high sensitivity, thereby minimising missed
END cases (Figure 1 showed that its ROC curve enclosed the
largest  area).  P-R  curves  (Figure  2)  further  indicated  that
XGBoost and the MLP striked the best balance between preci-
sion and recall, a desirable property for datasets with imbal-
anced positive  and negative classes.  Taken together,  these
findings  demonstrated  that  XGBoost  offered  the  strongest
overall discriminative capability, effectively balancing detec-
tion rate, and false‑positive rate. Therefore, it is the most suit-
able model for predicting END in this study (Table II).

Among the six algorithm models, the XGBoost model achieved
the highest AUC on the validation set (0.966) and was, there-
fore, selected as the optimal predictor.  Its key performance
metrics  were:  accuracy  0.905,  recall  (sensitivity)  1.000,
specificity 0.897, precision 0.429, and F1 score 0.600.
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Table I: Comparison of the clinical characteristics between the END and non‑END groups.

Variables END Group
(n = 16)

Non‑END Group
(n = 193)

χ2/t p‑values

TOAST classification     
LAA 12 111 4.578 0.205
CE 2 23
SVO 1 55
UD 1 4
Pneumonia (comorbidity) 6 37 3.038 0.081
Infarct territory     
AC 12 123 1.080 0.583
PC 1 28
AC+PC 3 42
Alcohol consumption 5 69 0.013 0.909
Smoking 11 123 0.221 0.638
Moderate‑to‑severe arterial stenosis 11 113 0.639 0.424
Atrial fibrillation 3 25 0.432 0.511
Diabetes mellitus 3 47 0.257 0.612
Hypertension 14 101 7.399 0.007
Gender (male / female) 11/5 139/54 0.077 0.782
Age (years) 69.312 ± 9.250 63.725 ± 10.386 2.299 0.034
White blood cell count (×109/L) 8.046 ± 2.576 7.799 ± 2.539 0.369 0.717
Platelet count (×109/L) 253.188 ± 136.321 222.193 ± 58.444 0.903 0.38
Direct bilirubin (µmol/L) 2.794 ± 1.518 3.292 ± 2.682 -1.167 0.255
Albumin (g/L) 41.506 ± 2.709 40.783 ± 3.938 0.983 0.337
ALT(U/L) 21.75 ± 12.091 20.743 ± 10.191 0.323 0.75
Alkaline phosphatase (U/L) 90.500 ± 19.980 84.270 ± 22.642 1.185 0.251
Potassium (mmol/L) 4.119 ± 0.513 3.908 ± 0.388 1.606 0.127
Admission NIHSS score 9.812 ± 5.540 6.415 ± 5.152 2.37 0.03
Prothrombin activity (%) 110.375 ± 15.491 107.818 ± 15.066 2.977 0.009
INR 0.956 ± 0.079 0.972 ± 0.090 0.636 0.533
Prothrombin time (s) 12.800 ± 0.849 12.904 ± 0.892 -0.745 0.465
Activated partial thromboplastin time (s) 33.481 ± 3.104 33.662 ± 3.26 -0.47 0.644
Fibrinogen (g/L) 2.932 ± 0.472 3.274 ± 0.909 -2.256 0.018
Thrombin time (s) 17.162 ± 0.823 17.333 ± 1.776 -0.706 0.486
D‑dimer (mg/L) 0.792 ± 0.827 0.799 ± 1.637 -0.705 0.487
Creatinine (µmol/L) 77.688 ± 19.12 75.575 ± 20.006 -0.025 0.98
Urea (mmol/L) 6.996 ± 1.819 6.131 ± 1.615 0.423 0.677
AC: Anterior circulation; PC: Posterior circulation; LAA: Large artery atherosclerosis; CE: Cardioembolism; SVO: Small vessel occlusion; UD: Undetermined aetiology.
Note: p-value calculation: continuous variables were compared using an independent-samples t-test (with Welch’s correction when variances were unequal) or a
Mann–Whitney U test if non-normally distributed; categorical variables were analysed using Pearson’s χ2 test (or Fisher’s exact test when any expected cell count <5).

Table II: Comparison of the predictive accuracy on the validation set for six machine learning models.

Models AUC Accuracies Sensitivities Specificities Precisions F1 scores
Logistic regression 0.914 0.738 1.000 0.718 0.214 0.353
Decision tree 0.957 0.952 1.000 0.949 0.600 0.750
Random forest 0.962 0.901 0.667 0.923 0.400 0.500
XGBoost 0.966 0.905 1.000 0.897 0.429 0.600
Support vector machine 0.846 0.833 0.667 0.846 0.250 0.364
Neural network (MLP) 0.957 0.905 0.667 0.923 0.400 0.500

Table III: Confusion matrix of the optimal XGBoost predictive model.

Actual / Predicted Predicted END (+) Predicted non‑END (−)
Actual END (+) 3 (TP) 0 (TN)
Actual non‑END (−) 4 (FP) 35 (TN)
TP: True positive; FP: False positive; TN: True negative.

The optimal hyperparameters were a learning rate of 0.1
and  a  max_depth  of  8.  The  confusion  matrix  (Table  III)
showed FN = 0, indicating no false negatives thereby a 100
% detection rate for END cases. There were four false posi-
tives, suggesting that clinical judgment is required to reduce
over‑alerts. The SHAP plot (Figure 3) provided a global inter-
pretation  of  the  XGBoost  model.  The  beeswarm diagram
ranked the top three contributors as admission NIHSS score,
hypertension,  and age.  Admission NIHSS had the highest
mean  SHAP  value,  indicating  that  baseline  neurological
deficit  was  the  dominant  factor  influencing  END.  Hyper-

tension,  elevated fibrinogen,  and older  age contribute  posi-
tively, further increasing the risk of END.
 

DISCUSSION

Developing machine learning models to predict END after
intravenous rt‑PA thrombolysis offers several clinical advan-
tages. First, END generally occurs within 24 hours of throm-
bolysis and is a pivotal determinant of functional outcome in
patients with AIS. Early identification of high‑risk individuals
during this window enables clinicians to intensify neurolog-
ical monitoring, repeat neuroimaging promptly, and adjust
blood‑pressure  control,  anticoagulation,  and  other  thera-
peutic  strategies,  thereby  reducing  secondary  injury.12,13

Second, hospital resources for AIS are limited, whereas END is
relatively uncommon (≈ 5 %–30 %).



Yi   Ba,  Xiaolin  Xu,  Hong’an Gao and Chengguang Song

Journal  of  the College of  Physicians and Surgeons Pakistan 2025,  Vol.  35(11):1396-1401 1399

Figure 1: ROC curves for the six machine learning models.

Figure 2: P-R curve comparison of the six models.

Figure 3: SHAP summary plot of the XGBoost model.

The traditional approach of universally intensive monitoring is
therefore  inefficient.  Risk  stratification  allows  monitoring
resources to be concentrated on patients predicted to be at
high risk, facilitating precision management.14 Third, compared
with  linear  regression  or  single‑score  systems,  machine
learning models can process multidimensional clinical data
and  capture  non‑linear  interactions,  offering  greater  sensi-
tivity and better generalisability for individualised prediction.
Interpretability  techniques  such  as  SHAP  further  clarify
each feature’s relative contribution to outcomes, enhanc-
ing the model’s acceptability in clinical decision‑making.15,16

Finally,  visual  risk‑assessment  tools  improve  physician–
patient communication, helping patients and their families
understand their own risk and adhere to subsequent treat-
ment  and  rehabilitation  plans.  Collectively,  these  benefits
may lower disability and mortality rates,  shorten hospital
stays, and reduce healthcare costs.

Among the six algorithm models in this study, the linear
logistic regression model reached 100% sensitivity with only
a few parameters, yet its inability to capture non‑linear and
interaction effects kept precision at just 0.214, resulting in a
high false‑positive rate. Decision tree models are intuitive
and easily interpreted; however, a single‑tree structure is
prone  to  over‑fitting,  so  their  generalisation  performance
was unstable. The ensemble random forest lowered variance
through bagging and achieved an AUC of 0.962; however, in
the  presence  of  class  imbalance,  it  leaned  toward  the
majority class, leaving recall at 0.667. The kernel‑based SVC
handles high‑dimensional features well; however, with the
present data size, it required long training times and was
extremely sensitive to hyperparameters, yielding an AUC of
only 0.846. Although a deep MLP can, in theory, approximate
any complex function, it requires much larger samples to
avoid  overfitting;  consequently,  its  recall  likewise  remained
at 0.667.

By contrast, XGBoost finely fits residuals via gradient boosting
while introducing L1/L2 regularisation in each iteration to
curb overfitting; combined with class‑weighting mechanisms
such as scale_pos_weight, it is naturally suited to minority‑class
problems, such as END. On the validation set, it delivered
the highest AUC (0.966), achieved 100% recall, and limited
false  positives  to  four—striking  a  balance  between  zero
missed diagnoses  and an  acceptable  false‑alarm rate.  In
addition,  XGBoost  automatically  handles  missing  values,
trains  rapidly,  and  integrates  seamlessly  with  SHAP,
enabling individualised risk attribution without compromising
clinical  interpretability.  Taken together,  its  overall  perfor-
mance,  computational  efficiency,  and  clinical  usability
surpassed those of the other models, establishing XGBoost
as the optimal predictive tool in this study.

A  closer  examination  of  XGBoost’s  performance  in  the
present setting shows that its advantages extend beyond
leading  metric  values;  they  arise  from  a  strong  match
between the algorithm’s design and the characteristics of
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clinical  data.  First,  XGBoost  employs  a  gradient‑boosting
framework that chains a series of weak decision trees in a
residual‑learning  sequence,  with  each  new  tree  fitting  the
hard samples left by the previous model. This layer‑by‑layer
error‑correction  mechanism  continually  strengthens  the
recognition of the minority END class in a task that is highly
imbalanced and limited in  sample size,  whereas bagging
methods tend to dilute learning focus.17,18 Second, the objec-
tive function incorporates both first‑ and second‑order gradi-
ents and embeds L1/L2 regularisation, accelerating conver-
gence while effectively preventing overfitting. As a result, an
AUC of 0.966 and 100% recall were achieved on a dataset of
only 209 patients.19 Third, XGBoost’s automatic missing‑value
branching strategy allows each tree to assign a default direc-
tion for missing records, avoiding information loss and impu-
tation error that are common in clinical data. Combined with
parameters—such as scale_pos_weight, the model maintains
zero missed diagnoses while keeping false positives within
an acceptable range.20,21 Fourth, built‑in column subsampling
and parallel computation make training far faster than tradi-
tional  boosting or deep networks,  facilitating rapid model
updates  within  real‑time  clinical  workflows.  Its  incremental
learning  capability  also  supports  continual  fine‑tuning  as
new patient  data  accrue,  preserving  model  freshness.22,23

Crucially,  the  tree  structure  integrates  seamlessly  with
SHAP,  enabling  global  and  individual  quantification  of  each
feature’s  marginal  contribution  and  dispelling  black‑box
concerns.  The  high‑impact  features  identified  (admission
NIHSS  score,  age,  fibrinogen,  and  hypertension)  coincide
with established stroke risk factors, further enhancing the
model’s credibility and generalisability.24,25 In sum, XGBoost
surpasses  the  other  models  across  four  dimensions—
algorithmic  mechanism,  data  adaptability,  computational
efficiency, and interpretability—making it the ideal choice for
post‑thrombolysis  END  risk  stratification  and  laying  a  solid
foundation for future clinical decision‑support systems that
integrate multimodal data such as imaging and genomics.

Although  XGBoost  achieved  the  best  performance  in  this
study,  its  use still has notable limitations. Being based on
single‑centre, retrospective data with a limited sample size,
the model is vulnerable to selection bias. The feature set
was restricted—only admission‑time clinical variables were
included;  imaging,  haemodynamic,  and  genetic  data  were
not integrated, leaving some END‑triggering mechanisms
under‑represented.  Numerous  hyperparameters  also
require  manual  tuning,  potentially  adding  maintenance
overhead  during  clinical  deployment.  Interpretability
remains  incomplete:  while  SHAP  helps,  it  offers  limited
insight  into  temporal  patterns  or  latent  causal  relation-
ships.

Future work should validate generalisability in large, multi-
center, and prospective cohorts, streamline updates via auto-
mated hyperparameter optimisation and incremental learning,
and incorporate multimodal data and causal‑ inference frame-

works  to  further  improve  predictive  accuracy,  interpreta-
bility, and clinical usability.

CONCLUSION

Using  four  key  admission  variables—NIHSS  score,  age,
fibrinogen  level,  and  hypertension—for  predicting  END  after
rt‑PA thrombolysis, XGBoost proved to be the optimal model,
achieving the highest AUC (0.966), 100 % recall, and strong
interpretability. It thus offers a reliable tool for early risk stratifi-
cation  and  precise  allocation  of  monitoring  resources  in
rt‑PA–treated patients, while also laying a methodological foun-
dation  for  multimodal,  continuously  updated  stroke‑alert
systems.
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