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ABSTRACT
Objective: To construct a prognostic model using artificial neural network (ANN) approach, providing an idea for the prediction and
diagnosis of cholangiocarcinoma (CCA).
Study Design: Experimental study.
Place and Duration of the Study: Department of General Surgery, Zhenjiang Hospital, Zhenjiang Province, China, between
January and March 2022.
Methodology: Available datasets were obtained from the Gene Expression Omnibus (GEO) database to construct the train cohort
and the test cohort of CCA, and screened out the differentially expressed genes (DEGs) of CCA. Next, an ANN model for CCA diag-
nosis was constructed based on the scores of  the DEGs and evaluated its  accuracy and efficiency using ROC curves.  Finally,  the
immune infiltration and the function of extracellular matrix (ECM) protein SPACRL1 were analysed to reveal the characteristic altera-
tions in CCA.
Results: This analysis revealed 166 DEGs, mainly concentrated in the ECM organisation, neutrophil activation and other pathways.
Then a set of 17 CCA disease signature genes scores were obtained to build an ANN prediction model and the ROC curve was
plotted. The AUC in the train group (0.980) indicated that the accuracy of the diagnosis model is extremely high. Finally, there was
a significant increase of B cells naïve (p=0.025), tregs (p=0.004), and macrophages M1 (p<0.001) in the tumour-microenvironment
of CCA, while SPARCL1 was a protective factor on disease-specific survival (DSS) in CCA (p=0.009).
Conclusion: This study has developed an accurate prediction model for CCA diagnosis, and identified SPARCL1 as pivotal factor in
CCA by modulating the tumour immune-microenvironment.
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INTRODUCTION

Cholangiocarcinoma  (CCA)  is  a  highly  heterogeneous  and
aggressive malignant tumour that originates from the epithe-
lial cells of the bile ducts and is associated with a terrible prog-
nosis.1 Over the last decade, the global incidence of CCA has
been constantly increasing.2 Based on the anatomical loca-
tion,  CCA can be classified into  two subtypes:  Intrahepatic
cholangiocarcinoma (ICC)  and  extrahepatic  cholangiocarci-
noma (ECC). ECC can be further divided into perihilar cholan-
giocarcinoma (pCCA) and distal cholangiocarcinoma (dCCA).3

Currently,  surgical  resection,  radiotherapy,  chemotherapy,
and biologically targeted therapy are the first-line treatments
for CCA.
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Among localised patients, and surgical procedures still remain
the most preferred method for treating CCA.4 However, due to
the insidious onset and rapid progression of the disease, most
patients are already at an advanced stage by the time of consul-
tation, which indicate that they have lost the best opportunity
for surgery. Even though 25%-35% of patients can undergo
radical resection, some of them are prone to recurrence and
metastasis after surgery with a survival rate of less than 1 year.5

Since the aetiology of CCA is still unclear and its malignancy
degree is hazardous, biomarkers for diagnosis, prognosis and
treatment  evaluation  are  urgently  required.  Therefore,  new
therapeutic approaches such as molecular targeted therapy
and immunotherapy need to be developed and updated. In-
depth  investigation  into  the  molecular  mechanisms  of  CCA
development and the search for new therapeutic targets can be
dedicated to improve patients prognosis.

Artificial  intelligence  has  been  applied  to  all  the  areas  of
medicine, including clinical diagnosis, precision therapy, and
health management, and it has also shown promising results in
oncology research, drug discovery, and individualised treat-
ment.6,7
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Table I: Composition of datasets for train and test groups.

                          Train Group    Total Test Group

Dataset GSE26566 GSE32225 GSE89749 GSE132305  GSE76297
Normal sample 6 6 2 38 52 92
Tumour sample 104 149 118 182 553 91
Enrollment 110 155 120 220 605 183

Figure 1: Identification of 166 DEGs in CCA and Functional enrichment analysis. (A-B): Heatmap and volcanic map of 166 differential genes in
the Train group with 68 up-regulated and 98 down-regulated. |log2FC| >0.8, p-value <0.05.(C): Top 10 biological processes, cellular
components, and molecular functions of GO enrichment analysis. (D): All KEGG enrichment analysis results.

Machine  learning  has  clear  the  advantages  in  analysing
complex  medical  data,  and  its  flexibility  and  scalability  are
better suited for prognosis prediction. Auslander et al. applied
short-term  memory  information  networks  to  learn  about
tumour evolution and accurately predict tumour mutation load
and mutation  rates  at  different  times,8  thus  helping  clinicians
in  their  decision-making.  In  future,  second-generation
genomics will help the clinicians develop individualised treat-
ment plans for patients in real-time by detecting the genetic
changes  in  each  patient's  tumour  molecular  profile.9  Artificial
neural  network (ANN) is  the most  commonly used analysis

method in this area. ANN is a mathematical model that simu-
lates the processing mechanism of the human brain's nervous
system for complex information based on the theoretical under-
standing  and  abstraction  of  the  human  brain's  structural
response  mechanism.  The  advantages  of  artificial  neural
networks include the ability to handle complex non-linear rela-
tionships, better fault tolerance, learnability, and adaptability,
etc.10-12  The objective of this study was to construct a prog-
nostic  model  using  artificial  neural  network  (ANN)  approach,
providing an idea for the prediction and diagnosis of cholangio-
carcinoma (CCA).
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Figure 2: The Metascape analysis of DEGs. (A): The biological functions in which DEGs are enriched in CCA. (B): The pathways associated with DEGs in CCA.

 

Figure 3: Selection of CCA-specific genes. (A): Construction of random forest. The x-axis represented the number of trees and the y-axis represented
the cross-validation error. The three curves referred to the error of the Train cohort, Test cohort and all samples, respectively. (B): The importance
score of the signature genes of CCA.
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Figure 4: Construction of prediction model for CCA. (A): Heatmap of 17 characteristic DEGs. (B): A neural network prediction model based on
the scores of the genes was built, including the input layer, the hidden layer and the output layer. (C-D): ROC curves were plotted and the
AUCs were 0.980 in the Train group, while 0.681 in the Test group.

METHODOLOGY

This bioinformatics study was conducted from January to
March 2022 at  the  Department  of  General  Surgery  and
Anesthesiology,  Zhenjiang  Hospital,  Zhenjiang  Province,
China.  Initially,  four  available  datasets  (GSE26566,
GSE32225, GSE89749, GSE132305) from the GEO database
(http://www.ncbi.nlm.nih.gov/geo/)  were  obtained  to
construct the Train cohort. The selection criteria were diag-
nosed cholangiocarcinoma; Sample size >100 patients; and
containing tumour samples, and normal controls. Patients
with coexistent hepatocellular carcinoma were excluded. To
verify  the  accuracy  of  the  artificial  neural  network  model,
another dataset (GSE76297) as the Test cohort from TCGA
(http://www.cancer.gov/) was also downloaded (Table I).

Table II: Prediction results of artificial neural networks.

 Train Group Test Group
 Normal Cancer Normal Cancer
Normal 50 2 19 73
Cancer 1 552 0 91
Normal accuracy 0.962 0.207
Cancer accuracy 0.998 1

After batch correction of the data, the R package “limma”
was  used  to  screen  out  the  differentially  expressed  genes
(DEGs)  of  CCA  in  the  train  cohort,  the  R  package
“pheatmap” to visualise heat maps and volcano maps for
the  differential  genes.  The  log2  fold  change  ≥0.8  and

adjusted  p-value  <0.05  were  considered  as  statistically
significant. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes  and  Genomes  (KEGGs)  enrichment  analyses  for
DEGs  were  performed  by  clusterProfiler,  ggplot2,  and
enrich  plot.  Bioinformatics  investigations  were  also
conducted through the Metascape website  (http://metas-
cape.org/).

Random-forest  analyses  were  conducted  to  identify  the
disease-specific  genes from DEGs.  The R package random-
Forest  was  used  and  the  parameters  are  set  as
seed=123456 and ntree=500. The identical genes achieved
by the above method are recognised as characteristic genes
of CCA. The limma and pheatmap packages were applied to
visualise the disease signature genes with a gene impor-
tance score >1 and cluster the samples according to their
expression. The purpose of genetic scoring was to remove
the  batch  effect  between  the  Train  and  Test  cohort.  If  the
gene was up-regulated and its expression was greater than
the median value, it was labelled as 1, otherwise, labelled
as 0. If the gene was down-regulated, the opposite pattern
was used. Then an artificial neural network model could be
constructed for CCA diagnosis based on the scores of the
genes  by  NeuralNetTools  packages.  This  neural  network
consisted of 3 layers: the input layer, with the scores of
genes; the hidden layers, with the scores and weights of
genes; and the output layer, with the results for control and
experimental samples. The seed was set as 12345678.
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Figure 5: The analysis of immune microenvironment in CCA. (A): Histogram of 22 types of immune cells in CCA and healthy controls. The
horizontal coordinate represented the sample and the vertical coordinate represented the amount of immune cells. (B): The correlation
analysis between the immune cells, positive correlations were shown in red and negative correlations were shown in blue. (C): The analysis of
immune cells differences in the tumour microenvironment of CCA.

The  accuracy  and  efficiency  of  the  artificial  neural  network
model for CCA were evaluated by plotting receiver operating
characteristic (ROC) curve using the pROC package. In this
ROC curve, the horizontal coordinate represents the false posi-
tive rate, represented by 1-Specificity, and the vertical coordi-
nate represents the true positive rate, represented by Sensi-
tivity. The area under the ROC curve (AUC) was assessed for
the diagnostic model.

Next an analysis of immune cell infiltration was performed. A
total  of  22  immune  cells  were  identified  by  the  CIBERSORT
algorithm and screened using the R packages e1071, prepro-
cess  Core,  and  CIBERSORT.R.  At  last,  the  study  also
measured the distribution of the immune cells between the
Train cohort and Test cohort using vioplot. All the p-values
less than 0.05 were considered statistically significant.

RESULTS

As shown in Figures 1A-1B, the analysis revealed 166 differen-
tial genes between CCA and normal tissue in the Train group.
The heat map and the volcano map showed a good visual indi-
cation of 68 up-regulated and 98 down-regulated. The study
performed GO and KEGG analysis on these DEGs and the GO
terms revealed that the DEGs were mainly concentrated in
the extracellular matrix organisation and neutrophil activation
(Figure  1C).  KEGG enrichment  analysis  demonstrated  that
these genes were enriched in the human papillomavirus infec-
tion, coronavirus disease, and human T-cell leukaemia virus 1

infection (Figure 1D). These results indicated a strong correla-
tion with the immune microenvironment.

By measuring the Metascape, we could visualise which func-
tions and pathways were enriched by the differential genes in
a network diagram like Figure 2A. The nodes represented func-
tions or pathways which meant the similarity between the two
nodes was relatively high, if the two nodes were connected.
The NABA_CORE_MATRISOME gene set contained many genes
encoding  extracellular  matrix  organization  and  response  to
cytokine in EC, while the NABA_ECM_REGULATORS gene set
contained genes encoding PID AP1 pathway, neutrophil degran-
ulation, and response to hormone. The related pathways were
interferon alpha/beta signalling, post-translational protein phos-
phorylation and neutrophil degranulation (Figure 2B).

The random-forest algorithm could be applied for selecting the
DEGs.  As  shown  in  Figure  3A,  the  x-axis  represented  the
number of trees and the y-axis represented the cross-valida-
tion error. The three curves referred to the error of the Train
cohort  (red),  Test  cohort  (green),  and  all  samples  (black),
respectively. Figure 3B represented the importance score of
the  gene,  and  genes  with  a  score  greater  than  1  were
selected. After validating by paired samples from the TCGA
database, a set of 17 CCA disease signature DEGs, of which 11
were  upregulated  (CD93,  COL1A1,  CRISPLD2,  CTSE,  EMP1,
FBLN1,  JUP,  MYH11,  SPARCL1,  SULF1  and  THBS2)  and  6
(CXCL2, FOSB, KLF9, MT1M, MT1X, SDS) were downregulated,
obtained, and applied for subsequent analysis.
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Figure 6: The analysis of function for SPARCL1 in CCA (A): The accuracy of SPARCL1 in identifying CCA by ROC curve and the AUC was 0.836.
(B-C): Univariate survival analysis of SPARCL1 in CCA. (D): The correlation between the methylation level of cells and the expression of
SPARCL1 (r=-0.359, p=0.032). (E): The correlation between the expression of SPARCL1 and the immune cells. (F-O): The correlation between
the expression of SPARCL1 and the enrichment of the five top associated types of immune cells, and the most remarkable correlation was
manifested by Mast Cells (r=0.775, p<0.001).
* Representing less than 0.05, ** Representing less than 0.01, and *** Representing less than 0.001.

The cluster diagram here in Figure 4A demonstrated that the
types of samples could generally aggregate together, which
meant that the expression of the pathogenic genes could
distinguish  between  control  and  experimental  samples.
Next, a neural network prediction model was built based on
the scores of the genes as Figure 4B. It could be noticed that
there were 5 nodes in the hidden layer, and according to
these 5 nodes and the corresponding weights, the output
layer  could  be  acquired,  which  was  the  attribute  of  the
sample. ROC curves were plotted to predict the accuracy
and  specificity  of  neural  network  models  in  Figure  4C-4D.
The larger the area under the curve, the higher the accuracy
of the neural network model was. The AUCs in the Train and
Test group were 0.980 and 0.681, respectively, which meant
that  the  accuracy  of  the  authors’  diagnosis  model  was
extremely authentic and independent of variations of such
cohort (Table II).

The  histogram  in  Figure  5A  revealed  22  categories  of
immunocells in each sample, the horizontal coordinate repre-
sented the sample and the vertical coordinate represented
the amount of immune cells. It was noticeable that the B
cells, T cells, and macrophages were relatively abundant in
CCA. Figure 5B showed the results of correlation analysis
after  obtaining  the  immune  cells  infiltration,  in  which  posi-

tive correlations were shown in red and negative correla-
tions were in  blue.  The coefficient  between T cell  CD8+  and
NK cells activated was the most statistically positive correla-
tion  at  0.29,  while  the  greatest  negative  one  appeared
between Mast cells activated and Mast cells resting at -0.46.
The analysis of immune cell differences in the violin plot indi-
cates  that  B  cells  naïve  (p=0.025),  tregs  (p=0.004)  and
Macrophages  M1(p<0.001)  were  more  abundant  in  the
tumour  microenvironment  of  CCA,  while  T  cells  CD4+

memory resting (p=0.003), Monocytes (p<0.001), Dendritic
cells resting (p=0.019), Mast cells activated (p=0.002) and
Neutrophils (p=0.046) were less extensive with statistically
significant differences (Figure 5C).

The extracellular matrix (ECM) is known to regulate tissue
development and cell morphology, movement, and differenti-
ation.  SPARCL1  is an ECM protein, hence finally the authors
performed a series of functional analyses on SPARCL1, one
of the 17 DEGs, to determine its role in CCA. The accuracy of
SPARCL1 in identifying CCA was evaluated by ROC curve and
the AUC was 0.836 (Figure 6A, CI:0.719-0.954).  In Figure
6B-6C,  univariate  survival  analysis  demonstrated  that
SPARCL1 could affect CCA as a protective factor on disease-
free  survival  (DFS,  p=0.009),  but  no  statistically  significant
differences  on  overall  survival  (OS,  p=0.087).  As  shown  in



A cholangiocarcinoma prediction model  based on random forest  and artificial  neural  network algorithm

Journal  of  the College of  Physicians and Surgeons Pakistan 2023,  Vol.  33(05):  578-586584

Figure 6D, the methylation level of cells and the expression
of  SPARCL1  were  inversely  correlated  in  CCA  (r=-0.359,
p=0.032),  and the immune cells  most  closely  associated
with SPARCL1 were Mast cells, B cells, T cells, Th1 cells and
T helper cells (Figure 6E). Then the correlation between the
expression of  SPARCL  and the enrichment  of  these top five
types of immune cells were analysed. It was discovered that
the expression of SPARCL in CCA was positively correlated
with  the  degree  of  infiltration  of  these  five  immune  cells
significantly, and the most remarkable correlation was mani-
fested  by  Mast  Cells  (r=0.775,  p<0.001,  Figure  6F-6O).
Therefore  it  was  rational  to  conclude  that  SPARCL  could
provide  an  independent  prediction  of  prognosis  in  CCA
patients,  and  most  likely  through  the  modulation  of  the
tumour immune-related microenvironment

DISCUSSION

A significant amount of clinical research has been conducted
both in China and abroad in order to develop new treatment
strategies for cholangiocarcinoma (CCA) and improve patient
prognosis. Immunotherapy has recently gained attention as a
potential treatment modality due to the role of the immune
microenvironment  in  tumourigenesis  and  development.
Studies have shown that CCA cells can create a favourable
environment by secreting tumour-related regulatory media-
tors through the extracellular matrix and stromal cells, thus,
promoting the proliferation of  tumour cells  and enhancing
their  resistance  to  treatment.13  Therefore,  it  is  crucial  to
understand  the  mechanisms  underlying  the  influence  of  the
tumour microenvironment on the development of CCA.

In  this  study,  machine  learning  identified  17  differentially
expressed genes (DEGs) in CCA, of which 11 were upregu-
lated (CD93,  COL1A1,  CRISPLD2,  CESE,  EMP1,  FBLN1,  JUP,
MYH11, SPARCL1, SULF1 and THBS2) and 6 (CXCL2, FOSB,
KLF9,  MT1M,  MT1X,  SDS)  were  downregulated.  An  artificial
neural network (ANN) was then used to construct a diagnostic
model,  which  exhibited  significantly  higher  accuracy  and
specificity  (0.980)  for  diagnosing  predicted  CCA  than  other
published computer models, such as lncRNA signature,14 and
multi-mRNA signature.15  This  ANN model  proved to  be an
excellent  way  to  classify  patients  with  different  survival
outcomes in CCA. Functional enrichment analysis of the DEGs
suggested SPARCL1 performed very well in predicting 5-year
recurrence in CCA patients and exhibited a strong association
with immune cell  infiltration in CCA, which could be an inde-
pendent  predictor  of  survival  prognosis,  providing  novel
insights into the molecular mechanisms of CCA tumorigenesis
and development.

The occurrence of most CCA is closely related to a chronic
inflammatory  state  of  the  biliary  system,  resulting  in  the
formation of a pro-cancer microenvironment. Tumour-associ-
ated macrophage (TAMs) is an important component of the
tumour immune microenvironment and predominantly of the
M2 type in CCA, promoting tumour growth and immunosup-
pression.16,17 TAMs can also inhibit the anti-tumour function

of cytotoxic lymphocytes by promoting the expression of
programmed cell death receptor-ligand 1 (PD-L1). In addi-
tion to this, lots of crucial cytokines are secreted by TAM,
such as vascular endothelial growth factor A, angiopoietin,
and Wnt protein, which promote angiogenesis and tumour
cell growth.18 In the CCA microenvironment, there is also a
large  number  of  regulatory  T  lymphocytes  (Tregs)  that
suppress  the  anti-tumour  effects  of  the  natural  killer  cells
and cytotoxic T lymphocytes by secreting IL-10 and TGFβ1.
Treg can also overexpress cytotoxic T lymphocyte-associ-
ated  antigen  4  (CTLA4),  and  high  expression  of  the
CTLA4/CD80 pathway may promote immune escape and
therapeutic  resistance in  CCA cells.19  This  data  revealed
that B cells, macrophages and tregs were abundant in CCA
in the sample analysed, consistent with the previous results
and  confirm the  accuracy  and  reliability.  Furthermore,  the
DEGs enrichment analysis showed that the biological func-
tions involved include extracellular matrix (ECM) organisa-
tion. CCA cells are physically protected from immune attack
by the dense extracellular matrix that surrounds them, and
can physically evade immune attack by interfering with T
cell  migration  through  the  dense  extracellular  matrix.20

Therefore, the role of ECM-related proteins in CCA is crucial
and deserves attention.

SPARCL1,  an  ECM protein,  is  one of  the  DEGs identified in
this study and has recently been found to be closely associ-
ated with tumorigenesis as a potential oncogene. SPARC--
like protein 1 (SPARCL1) is a member of the family of acidic
and cysteine-rich secreted proteins (SPARC, osteointegrin
or  BM40)  and  has  been  proven  to  regulate  biological
processes such as cell proliferation, anti-cell adhesion and
tissue  repair.21  Recent  studies  have  shown  that  SPARC
influences the differentiation of human muscle cells by regu-
lating  cytoskeletal  remodelling.22  In  tumour-related  area,
SPARCL1  can  regulate  tumour  microenvironment-depen-
dent endothelial cell  heterogeneity in colorectal cancer.23

Additionally, it has been shown that SPARCL1 highly corre-
lates  with  stromal  score,  immune  score,  and  ESTIMATE
score,24 and in gastrointestinal mesenchymal tumours, the
KDM6A-SPARCL1  axis  can block metastasis  and regulate
the  tumour,  microenvironment  of  gastrointestinal
mesenchymal tumours by inhibiting nuclear translocation of
p65.25 However, the role of SPARCL1 in CCA is still unclear.
In this study, bioinformatics analysis revealed that SPARCL1
expression  in  CCA was  closely  and positively  correlated
with the infiltration of various immune cells, mainly B cells,
T cells, MAST cells, and so on. It is suggested that SPARCL1
may  influence  the  prognosis  of  patients  by  affecting  the
CCA  tumour  microenvironment.  Although  further  basic
experiments and clinical patient information are needed for
validation, SPARCL1 is also expected to be a novel prog-
nostic  biomarker  in  CCA related to  the tumour  immune
microenvironment.
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There are several limitations in this study that ought to be
considered. For example, the risk assessment model was
constructed entirely based on the original dataset of GEO,
but it was not validated with clinical samples and lacked
clinical evidence. In addition, this risk model can only be
used as a biomarker for predicting survival outcomes and
tumour microenvironment in CCA, while failing to discover
the  specific  biological  functions  of  the  individual  genes
involved in the model, which still needs further validation
and exploration by bioinformatics, basic experiments and
clinical data.

CONCLUSION

In summary, this study has constructed an accurate predic-
tion model  for  CCA using artificial  neural  networks,  random
forests, and other such methods in the field of bioinformatics
analysis. Moreover, the findings suggest that targeting ECM-
related  proteins  such  as  SPARCL1  could  be  a  promising
strategy for improving the efficacy of immunotherapy in CCA
patients. The results are of great significance for the precise
diagnosis  and  individualised  microenvironment  of  CCA in
future.
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