A Patient of Advanced NSCLC with a New EGFR Exon 19 Insertion Mutation and its Response to EGFR-TKIs

Ning Zhu1, Caixia Dong1, Shanshan Weng1 and Ying Yuan1,2

1Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
2Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, China

Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the standard therapy for patients with advanced non-small-cell lung cancer (NSCLC) harbouring common EGFR mutations. However, about 10% of EGFR mutations are uncommon mutations and their response to EGFR-TKIs remains unclear. The present case reports a 75-year-old female patient with advanced NSCLC, presenting with a new subtype of EGFR exon 19 insertion mutation (IPVAIL insertion), who showed obvious symptom improvement after EGFR-TKIs treatment but a relatively short time of progression-free survival (PFS) and succumbed to tumor 133 days (4.4 months) after diagnosis. In conclusion, patients harbouring new subtype of EGFR exon 19 insertion mutations, IPVAIL insertion may have a poor prognosis. Further experiences are required to characterise these uncommon mutations.

Key Words: Gefitinib, afatinib, exon 19 mutation, non-small cell lung cancer, epidermal growth factor receptor.


Correspondence to: Dr. Ying Yuan, Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
E-mail: yuanying1999@zju.edu.cn

Received: February 26, 2019; Revised: July 08, 2019; Accepted: July 20, 2019

CASE REPORT

Non-small-cell lung cancer (NSCLC) is the most common type of all lung cancers (about 85%).1 Activating EGFR mutations are main oncogenic drivers in NSCLC. With the application of the next-generation sequencing (NGS), more and more uncommon EGFR mutations are being detected. However, EGFR exon 19 insertions, first reported by He et al. in 2012, are very rare (about 0.5% of all EGFR mutations).2 Their sensitivity to EGFR-TKIs in patients with NSCLC is uncertain. Here, we report a case of a patient with advanced NSCLC harbouring IPVAIL insertion, a new subtype never reported before and its response to EGFR-TKIs.

In August 2017, a 75-year Chinese female patient presented at our hospital with a one-year history of repeated epigastria discomfort and pain in her lower back. The symptoms of appetite and weight loss aggravated in recent three months. The eastern cooperative oncology group (ECOG) performance status score of the patient was one.3 A serum tumor markers test panel was used for tumor screening and showed the level of cancer antigen-199 (CA-199), cancer antigen-153 (CA-153), cancer antigen-125 (CA-125) and carcinoembryonic antigen (CEA) obviously elevated. The levels were 279.7 unit/ml (normal level <37 unit/ml), 122.2 unit/ml (normal level: <30 unit/ml), 75.53 unit/ml (normal level: <35 unit/ml) and 161.97 nanogram/ml (normal level: <5 nanogram/ml), respectively. Gastroscopy suggested gastric ulcer, and colonoscopy was negative. Enhanced computed tomography (CT) of abdomen and pelvic cavity revealed multiple patchy high-density shadows in centrum, pelvis and proximal femur. Positron emission tomography/computed tomography (PET/CT) (Figure 1) suggested extensive bone destruction with increased radioactive intake and maximum standard uptake value (SUV) of 14.1. It also showed a mass with a slight increase in radioactive intake (SUV of 3.3) partially obstructing the bronchial cavity in the lower lobe of left lung. Although CA-199 and CA-125 were elevated in this patient, enhanced CT of abdomen and PET/CT showed no evidence of pancreatic/ovarian metastasis or primary pancreatic/ovarian cancers. Chest CT enhancement scan (Figure 2A) revealed blocked bronchial cavity in the lower lobe of left lung with pulmonary atelectasis, and a small amount of effusion in the left thoracic cavity. The patient refused to undergo bronchoscopy. We performed CT-guided biopsy of the right ilium and sacrum. Pathological results showed metastatic adenocarcinoma. Combined with immuno-histochemicalo results, CK (AE1/AE3) +++, CK7 +++, CK20 -, CDX2 -, TTF-1 +++, NapsinA +++, Ki-67 30%+, P53 +), the patient was eventually diagnosed with lung adenocarcinoma with multiple bone metastasis. NGS of 168 cancer-related
A patient of advanced NSCLC with a new EGFR exon 19 insertion mutation and its response to EGFR-TKIs

Activating EGFR mutations are main oncogenic drivers in NSCLC. In Asian NSCLC patients, EGFR mutations are detected in about 40-60% of cases. EGFR mutations can be divided into two categories: common mutations and uncommon mutation. Exon 19 deletions and exon 21 point mutation (L858R) are the two most common mutations, which also called classical mutations. They account for approximately 48% and 43% of all EGFR mutations, respectively. The remaining 10% of EGFR mutations are reported to occur in exon 18-21 and their subtype and frequency are listed in Table I. However, due to the complexity of uncommon mutations and the lack of large cohort studies, treatment aiming at EGFR uncommon mutations still remains a big challenge.

Exon 19 insertions are one subtype of the rare EGFR mutations. Park et al. reported two of three cases with exon 19 insertions responding to gefitinib, but time to progression (TTP) was relatively short (mean, 5.9 months). Iyevleva et al. reported three patients with exon 19 insertions receiving gefitinib and TTP were 5 months, 9 months, and 11 months. Lin et al. also reported three patients received EGFR-TKIs (two gefitinib, one erlotinib) and their progression-free survival (PFS) were 5 months, 22 months and 2 months, respectively. He et al. reported three of four patients harbouring exon 19 insertions sensitive to erlotinib or afatinib (TTP: 14 months, 19 months and 50 months). According to the published literature, all the reported EGFR exon 19 insertion subtypes are non-frame shift mutations. Except

Table I: EGFR mutation subtype occurring in exon 18-21 and their frequency.

<table>
<thead>
<tr>
<th>EGFR mutation subtype</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common mutations</td>
<td></td>
</tr>
<tr>
<td>Exon 19 deletion</td>
<td>48</td>
</tr>
<tr>
<td>Exon 21 point mutation (L858R)</td>
<td>43</td>
</tr>
<tr>
<td>Uncommon mutations</td>
<td></td>
</tr>
<tr>
<td>Exon 18 point mutation (G719X, E709X)</td>
<td>3-4</td>
</tr>
<tr>
<td>Exon 19 insertion</td>
<td>0.5</td>
</tr>
<tr>
<td>Exon 20 insertion</td>
<td>10 (1-17)</td>
</tr>
<tr>
<td>Exon 20 point mutation (S768I)</td>
<td>1</td>
</tr>
<tr>
<td>Exon 20 point mutation (T790M)</td>
<td>(inherited)</td>
</tr>
<tr>
<td>Exon 21 point mutation (L861Q)</td>
<td>2</td>
</tr>
</tbody>
</table>

DISCUSSION

EGFR: Epidermal growth factor receptor.

genes (Burning Rock Biotech, Guangzhou, People’s Republic of China) was performed on DNA derived from the biopsy specimen and circulating tumor DNA (ctDNA) derived from whole blood sample. Both showed the patient harbour a mutation (NM_005228.3, c.2217_ 2234dup) in the EGFR gene exon 19, resulting in a six amino acids insertion (p.Lys745_Glu746insIleProValAlaLys). According to the complexity of uncommon mutations and their interpretation in patients with EGFR exon 19 insertions receiving gefitinib and TTP were 5 months, 9 months, and 11 months. Lin et al. also reported three patients received EGFR-TKIs (two gefitinib, one erlotinib) and their progression-free survival (PFS) were 5 months, 22 months and 2 months, respectively. He et al. reported three of four patients harbouring exon 19 insertions sensitive to erlotinib or afatinib (TTP: 14 months, 19 months and 50 months) and they suggested that patients with exon 19 insertions should be treated with EGFR-TKIs.

In our patient, we found an 18-base pair insertion between the 2217th and 2234th nucleotides in EGFR exon 19, which lead to a six residue insertion in the protein structure between codon 745 and codon 746 (p.Lys745_Glu746insIleProValAlaLys). According to the published literature, all the reported EGFR exon 19 insertion subtypes are non-frame shift mutations. Except
for one patient, who had 15-base pair insertion, to all other had 18-base pair insertion. In addition, existing literature shows insertion types to include KIPVAI, IPVAIK, VPVAIK and TPVAIK2, whereas our patient had IPVAIL insertion, a new type never reported before. Its response to EGFR-TKIs treatment was less than satisfactory. Our patient's overall survival was only 133 days (4.4 months).

Despite the limitations of a case report, the present case demonstrates that patients harbouring this rare subtype of EGFR exon 19 insertion mutation may have a poor prognosis. Further experiences are required to characterise these rare mutations.

PATIENT’S CONSENT:
Written informed consents for publication of this case report and accompanying images were obtained both from the patient during her lifetime and from the patient's daughter after the patient died.

CONFLICT OF INTEREST:
Authors declared no conflict of interest.

AUTHORS’ CONTRIBUTION:
NZ: Contributed to the conception of the work, the acquisition of data for the work and the writing of the manuscript.
CD: Contributed to the design of the work, the interpretation of the results and the revising the manuscript.
SW: Contributed to the interpretation of the results and the revising the manuscript.
YY: Contributed to the conception of the work, the interpretation of results for the work and the revising the manuscript.

REFERENCES