Effect of Remifentanil Combined Anesthesia on Cytokines and Oxidative Stress in Patients undergoing Laparoscopic Surgery for Colon Cancer

Suchun Ding, Hongzhong Ma, Gao Wang, Zhenyu Yu, Kezhong Li and Aijie Huang

ABSTRACT

Objective: To investigate the effect of remifentanil combined anesthesia on serum cytokines and oxidative stress indices in patients undergoing laparoscopic surgery for colon cancer.

Study Design: Experimental study.

Place and Duration of Study: Department of Anesthesiology, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China, from May 2016 to March 2018.

Methodology: A total of 154 patients undergoing laparoscopic surgery for colon cancer were randomly divided into control group and observation group, with 77 cases in each group. Control group received fentanyl combined anesthesia, and observation group received remifentanil combined anesthesia. Levels of serum cytokines IL-8, IL-6, CRP, TNF-α and the levels of oxidative stress indices SOD, MDA, CAT, and GSH on the first day after operation were compared. Occurrence of adverse reactions during anesthesia recovery was observed and recorded in both groups.

Results: On the first day after surgery, levels of serum cytokines IL-8, IL-6, CRP, TNF-α and MDA in the observation group were lower than those in the control group (all p<0.001); levels of serum SOD, GSH, and CAT in the observation group were higher than those in the control group (all p<0.001). The frequency of adverse reactions such as nausea and vomiting, chills, restlessness, cough, and tachycardia in the observation group was lower than that in the control group (p=0.029, 0.016, 0.009, 0.025, and 0.003, respectively).

Conclusion: Compared with fentanyl combined anesthesia, the remifentanil combined anesthesia can significantly reduce serum levels of cytokines IL-8, IL-6, CRP, TNF-α and oxidative stress level, and is, therefore, more secure for patients undergoing laparoscopic surgery for colon cancer.

Key Words: Colon cancer, Laparoscopic surgery, Remifentanil, Fentanyl, Cytokines, Oxidative stress.
I-II, and anesthesia grade (ASA) I-II. Exclusion criteria were patients who already received some form of treatment, with multiple lesions; coagulopathy, endocrine system, immune system disease, chronic infection and other diseases, other sites of malignancy, abnormal heart, lung, liver, kidney function, high-sensitivity constitution, a history of drug or alcohol abuse, and mental and neurological disorders. The patients were randomly divided into a control group and an observation group, with 77 cases in each group.

All patients routinely fasted before surgery and monitored in the operating room with vital signs such as electrocardiogram, blood oxygen saturation, respiration, and blood pressure. Masks of 6 L/minute were given for oxygen; chronic vein catheterisation was opened, and hydroxyethyl starch was administered at a 1:1 volume ratio with 130/0.4 sodium chloride injection and lactate ringer’s injection 10 mL/(Kg/hour). It was intravenously infused until the end of surgery.

Anesthesia induction method: The control group was given intravenous injection of midazolam 0.1 mg/Kg + propofol 2 mg/Kg + fentanyl citrate 2.5 µg/Kg. The observation group was given intravenous injection of midazolam 0.1 mg/Kg + propofol 2 mg/Kg + remifentanil hydrochloride 2.5 µg/Kg. After successful induction of anesthesia, mechanical ventilation via tracheal intubation was performed.

Intraoperative anesthesia maintenance: the control group was given fentanyl citrate injection, and the effect site concentration was 0.3 µg/(Kg/hour) + propofol injection 2-4 mg/(Kg/hour), with continuous vein infusion by micro pump. The observation group received remifentanil hydrochloride 0.2 µg/(Kg/minute) + propofol injection 2-4 mg/(Kg/hour) for injection, with continuous vein infusion by micro pump.

During the operation, the bispectral index (BIS) monitor was used to monitor the depth of anesthesia, adjust the amount of propofol, and maintain the BIS at 45-55. Intraoperative intermittent administration of 0.05 mg/Kg vecuronium bromide for injection was used to maintain muscle relaxation. All patients underwent laparoscopic radical colon cancer surgery by the same group of physicians. The propofol infusion was discontinued 30 minutes before the end of surgery, and fentanyl and remifentanil were infused until the end of surgery. After the patient’s consciousness was restored, the endotracheal tube was removed and sent to the recovery room for resuscitation.

The levels of serum cytokines IL-8, IL-6, CRP, and TNF-α and the levels of oxidative stress indices SOD, MDA, CAT, and GSH on the first day after surgery were compared. Serum levels of IL-8, IL-6, CRP, and TNF-α were measured by enzyme-linked immunosorbent assay (ELISA). The SOD level was measured by xanthine oxidase method. Serum MDA was detected by thiobarbituric acid method. Serum CAT level was measured by spectrophotometry. Serum GSH level was detected by dithiodinitrobenzoic acid colorimetry. The occurrence of adverse reactions during anesthesia recovery was observed, recorded and compared between the two groups of patients.

SPSS 25.0 software is adopted for data statistical analysis. Measurement data shown in Mean ±SD was examined by independent sample t-test. Enumeration data was represented by n (%), and X² test is adopted to examine them. The p<0.05 was taken as statistical significance in the difference.

### RESULTS

Among the 154 patients, there were 85 (55.19%) males and 69 (44.81%) females; aged 41-67 years, with mean age of 56.35 ±4.81 years; and weight from 50-75 kg, mean being 62.15 ±7.43 kg. The operation time ranged from 201-287 minutes, average being 237.61 ±36.52 minutes. The surgeons were patients who already received some form of treatment, with multiple lesions; coagulopathy, endocrine system, immune system disease, chronic infection and other diseases, other sites of malignancy, abnormal heart, lung, liver, kidney function, high-sensitivity constitution, a history of drug or alcohol abuse, and mental and neurological disorders. The patients were randomly divided into a control group and an observation group, with 77 cases in each group.

### Table I: Comparison of serum cytokines levels on the first day after surgery.

<table>
<thead>
<tr>
<th>Groups</th>
<th>n</th>
<th>IL-8 (pg/mL) Mean ±SD</th>
<th>p-value</th>
<th>IL-6 (pg/mL) Mean ±SD</th>
<th>p-value</th>
<th>CRP (mg/L) Mean ±SD</th>
<th>p-value</th>
<th>TNF-α (pg/mL) Mean ±SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>77</td>
<td>69.65 ±7.41</td>
<td>&lt;0.001</td>
<td>74.67 ±10.26</td>
<td>&lt;0.001</td>
<td>19.73 ±8.52</td>
<td>&lt;0.001</td>
<td>47.36 ±6.99</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Observation group</td>
<td>77</td>
<td>50.24 ±3.45</td>
<td></td>
<td>52.32 ±6.79</td>
<td></td>
<td>11.62 ±2.37</td>
<td></td>
<td>35.23 ±6.20</td>
<td></td>
</tr>
</tbody>
</table>

### Table II: Comparison of serum oxidative stress markers on the first day after surgery.

<table>
<thead>
<tr>
<th>Groups</th>
<th>n</th>
<th>SOD (nU/mL) Mean ±SD</th>
<th>p-value</th>
<th>MDA (mmol/L) Mean ±SD</th>
<th>p-value</th>
<th>CAT (U/mL) Mean ±SD</th>
<th>p-value</th>
<th>GSH (mg/mL) Mean ±SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>77</td>
<td>75.83 ±5.64</td>
<td>&lt;0.001</td>
<td>7.87 ±1.03</td>
<td>&lt;0.001</td>
<td>80.65 ±6.17</td>
<td>&lt;0.001</td>
<td>60.54 ±8.21</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Observation group</td>
<td>77</td>
<td>80.16 ±8.43</td>
<td></td>
<td>5.35 ±0.55</td>
<td></td>
<td>89.83 ±9.03</td>
<td></td>
<td>70.16 ±12.57</td>
<td></td>
</tr>
</tbody>
</table>

### Table III: Comparison of adverse reactions during anesthesia recovery.

<table>
<thead>
<tr>
<th>Groups</th>
<th>n</th>
<th>Nausea and vomiting n (%)</th>
<th>p-value</th>
<th>Chills n (%)</th>
<th>p-value</th>
<th>Restlessness n (%)</th>
<th>p-value</th>
<th>Cough n (%)</th>
<th>p-value</th>
<th>Tachycardia n (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>77</td>
<td>9 (11.69)</td>
<td>0.029</td>
<td>8 (10.39)</td>
<td>0.016</td>
<td>9 (11.69)</td>
<td>0.009</td>
<td>11 (14.29)</td>
<td>0.025</td>
<td>11 (14.29)</td>
<td>0.003</td>
</tr>
<tr>
<td>Observation group</td>
<td>77</td>
<td>2 (2.60)</td>
<td></td>
<td>1 (1.30)</td>
<td></td>
<td>1 (1.30)</td>
<td></td>
<td>3 (3.90)</td>
<td></td>
<td>1 (1.30)</td>
<td></td>
</tr>
</tbody>
</table>
Remifentanil is a potent opioid analgesic that is administered through intravenous route. It has a rapid onset, short half-life, strong analgesic effect, and low toxicity. Propofol is a short-acting intravenous anesthetic that is commonly used for induction of general anesthesia. It can prevent or reduce stress response by affecting the surgical outcome and the patient's prognosis.

DISCUSSION

Surgical stress response is a major factor in the occurrence of complications such as stress-induced gastrointestinal ulcers and hemorrhage, which seriously affect the surgical outcome and the patient's prognosis. Anesthetic agents play an important role in the regulation of stress response. Selecting appropriate anesthetic drugs can prevent or reduce stress response and complications. Remifentanil is a potent anesthetic. With rapid onset and rapid elimination, its analgesic effect is far stronger than fentanyl. It is not easy to accumulate, and can reduce the secretion of cortisol, effectively inhibiting pneumoperitoneum and surgically induced cardiovascular responses. Now, it is commonly used for induction of general anesthesia. Propofol is a short-acting intravenous anesthetic that is characteristic of rapid onset, short half-life, strong controllability, no accumulation in the body and low toxicity. The combination of remifentanil and propofol has a synergistic effect, which can reduce the dose of propofol to 75%, and propofol has no effect on the clearance rate of remifentanil. This study showed that the incidence of adverse reactions such as nausea and vomiting, chills, restlessness, cough, and tachycardia was lower in the observation group than that in the control group. It suggested that the safety of remifentanil combined anesthesia is higher than that of fentanyl combined anesthesia.

IL-8 is a pro-inflammatory cytokine, the level of which is positively correlated with the degree of immune system damage. It can be used to evaluate the prognosis of colon cancer. The biological effects of IL-8 and CRP are quite strong, of which CRP is considered as a higher sensitivity indicator of increased tissue damage. TNF-α is derived from activated macrophages and can induce inflammatory responses and promote the synthesis of multiple cytokines. The results of this study showed that serum levels of IL-8, IL-6, CRP, and TNF-α were lower in the observation group than those in the control group on the first day after surgery. It suggested that remifentanil combined anesthesia can reduce the level of postoperative inflammatory markers in patients. The result is basically consistent with the studies of other literatures on this issue.

Oxidative stress is a stress response caused by reactive oxygen species, and it can cause tissue peroxidative damage. During the laparoscopic surgery, the artificial pneumoperitoneum needs to be established and removed; the intra-abdominal pressure is changed; ischemia-reperfusion is prone to occur, leading to oxidation-anti-oxidation system dysfunction; therefore, oxidative stress increases. In the oxidative stress indices, MDA can reflect the level of oxygen-free radicals in tissues and the degree of tissue damage; CAT, SOD, and GSH are all antioxidant enzymes, which can reduce the harm caused by oxidative stress. SOD can clear the superoxide radical of the body. CAT can catalyse the decomposition of hydrogen peroxide into oxygen and water. GSH has the physiological functions of scavenging free radicals, anti-oxidation and anti-aging. Increased MDA and decreased CAT, SOD, and GSH can easily lead to oxidative stress injury. The results of this study showed that serum MDA levels are lower in the observation group than those in the control group on the first day after surgery. Serum SOD, GSH, and CAT levels are higher in the observation group than those in the control group. It suggested that remifentanil combined anesthesia can significantly reduce postoperative oxidative stress.

CONCLUSION

Compared with fentanyl combined anesthesia, the remifentanil combined anesthesia can significantly reduce serum levels of cytokines IL-8, IL-6, CRP, and TNF-α in elderly patients undergoing laparoscopic colon cancer surgery and oxidative stress level; and is, therefore, more secure.

REFERENCES

Effect of remifentanil combined anesthesia on cytokines and oxidative stress in patients undergoing laparoscopic surgery for colon cancer


