INTRODUCTION

It is generally accepted that orthodontic treatment will have some sort of an effect on the facial proportions. Current trends show a preference for fuller, more prominent lips for a youthful appearance, hence the common belief that premolar extractions can lead to a ‘dishing in’ of the profile and premature aging of the face challenge the modality of this treatment as being desirable. With the development of different appliances and techniques for molar distalization, non-extraction therapy generally takes precedence. However, certain conditions justify the need for extractions, whereas others may be borderline. The question then arises: can premolar extractions be undertaken without negatively affecting the soft tissue characteristics of the patient?

Proffit indicated that the decline in extraction frequencies over the years occurred due to several factors, including concern regarding facial aesthetics, stability and temporomandibular dysfunction, as well as changes in technique. Although the exact frequency of orthodontic extractions are yet unknown due to inter-operator differences, almost one-third of all malocclusions are said to be severe enough to warrant the need for extractions.

Facial soft tissues are affected by a variety of variables including skeletal relationships, dental positions and soft tissue thickness and function; however, the exact nature of these relationships is still debatable. Literature reveals that the extraction of 4 premolars generally tends to flatten the profile by 2-3 mm when compared with non-extraction treatment, whereas others may be borderline. The question then arises: can premolar extractions be undertaken without negatively affecting the soft tissue characteristics of the patient?

Proffit indicated that the decline in extraction frequencies over the years occurred due to several factors, including concern regarding facial aesthetics, stability and temporomandibular dysfunction, as well as changes in technique. Although the exact frequency of orthodontic extractions are yet unknown due to inter-operator differences, almost one-third of all malocclusions are said to be severe enough to warrant the need for extractions.

Facial soft tissues are affected by a variety of variables including skeletal relationships, dental positions and soft tissue thickness and function; however, the exact nature of these relationships is still debatable. Literature reveals that the extraction of 4 premolars generally tends to flatten the profile by 2-3 mm when compared with non-extraction treatment. However, many authors believe that undesirable facial aesthetics at the end of orthodontic treatment cannot be attributed to the extraction of premolars, with proper case selection and management being the clinician's responsibility.

Although the Pakistani literature has studied the skeletal as well as dental arch changes with treatment, no local research on the soft tissue response to extraction versus non-extraction orthodontic treatment currently exists.

With reference to the hard to soft tissue relationship, different investigators have reported diverging views. Whereas some studies have aimed to predict the soft tissue response to tooth movement, others maintain that no good predictors of the precise response have...
Soft tissue profile response in extraction versus non-extraction orthodontic treatment

been identified. This complicates the picture for the orthodontist, for whom the simple concept of a passive drape of the soft tissues over the underlying hard tissues would have made changes easily foreseeable.

The purpose of the present study was to compare the changes occurring in the soft tissue profile in response to orthodontic treatment in extraction versus non-extraction cases, and to determine the parameters among the hard and soft tissue variables that show significant correlations to better understand the factors influencing the response to tooth movement.

METHODOLOGY

This was a quasi-experimental study conducted from 2005 to 2008 at the Dental Section, the Aga Khan University Hospital, Karachi. The lateral cephalometric records at two time periods (pre-treatment, T0 and end of active treatment, T1) of 34 patients having undergone routine orthodontic treatment were selected on the basis of the treatment modality provided and availability of records of adequate diagnostic quality. Patients who presented with severe craniofacial anomalies, need for surgical or orthopedic intervention or with history of previously extracted or missing teeth were excluded from the study. All patients were treated by the same orthodontist with comprehensive fixed appliance mechanotherapy.

Two groups of 17 patients each (13 females, 4 males) were formed, namely, the extraction group involving 4 premolar extractions, and the non-extraction group. Based on cephalometric analysis, all patients presented with either Angle’s Class I (n=24) or Class II malocclusion (n=10).

Each pair of pre and post-treatment lateral cephalographs was hand-traced on standard acetate paper at the same sitting to minimize tracing error. Cephalometric landmarks, reference lines, linear and angular measurements used in the study are depicted in Figure 1. A horizontal reference line (HRL) was constructed 70° inferior to the sella-nasion plane, from which a perpendicular was dropped through sella. This vertical reference line, called the sella-perpendicular (SP), was used to assess the sagittal incisal as well as soft tissue positions (Annexure 1B).

The data were analyzed using SPSS for Windows (version 14.0, SPSS Inc. Chicago) where pre and post-treatment differences amongst the extraction and non-extraction groups respectively were calculated by employing the paired sample t-test. Comparison of pre- and post-treatment differences between extraction and non-extraction groups were performed using the independent sample t-test. Pearson’s correlation coefficients and associated levels of significance were calculated to investigate for significant correlations among the variables. P-value of less than 0.05 was taken as statistically significant. To evaluate measurement error, 10 randomly selected cephalographs were retraced and measured one month after the initial procedure. Paired t-test was used to evaluate intra-examiner reliability.

RESULTS

The mean age of the extraction patients was 14 years and 6 months at the start of treatment, while that of the non-extraction patients was 14 years and 8 months. The mean treatment time for the extraction group was 2 years and 7 months, where as it was 2 years and 1 month for the non-extraction group.

The significant differences amongst the pre-treatment morphological characteristics were seen in the dental and soft tissue relationships, with significantly greater tooth size-arch length discrepancy in the mandibular arch (p=0.018) and a more procumbent lower lip (p=0.016) in the group that was treated with premolar extractions.

The results for intra-examiner reliability showed no significant differences between the two sets of measurements (p-value =0.548).

Significant changes were observed in the hard as well as soft tissue characteristics in the group of patients subjected to all 4 premolar extractions (Table I). These changes included a reduction in the angle SNA (sella to nasion to point A angle, Annexure 1A) by a mean of 2°, (p < 0.001) and upper and lower incisor retraction (mean 5.12 mm, p < 0.001 and 2.88 mm, p=0.001 respectively), thereby resulting in a decrease in lip prominence with the upper and lower lips falling back by an average of 3.3 mm (p=0.004) and 2.2 mm (p=0.021) respectively.

From T0 to T1 the most significant change occurring with treatment in the non-extraction group was confined to an increase in the lower incisor inclination (mean increase in IMPA of 5.7°, p=0.046) (Annexure 1C), hence resulting in a more acute interciscial angle (mean increase of 7.3°, p=0.026) and mild lower lip procumbency (mean 1.6 mm, p=0.009) at the end of active treatment (Table I).

At the end of active treatment, the only significant changes observed between the premolar extraction and non-extractions groups were a more acute interciscial angle (p=0.004) and greater lower lip vermilion thickness in the non-extraction group (p=0.023) as seen in Table II.

Assessing the net differences amongst the two groups at the end of treatment, as seen in Table II, the non-extraction group showed changes in incisor inclination (more acute interciscial angle at T1, p=0.005), with a mild increase in lower lip thickness (p=0.011) and
procumbency ($p=0.001$). The premolar extraction group showed greater changes in incisor position (retraction into extraction site) resulting in greater soft tissue changes with significant reduction in the procumbency of the upper ($p=0.004$) and lower lips ($p=0.001$).

Pearson’s coefficients of correlation (r) were calculated to assess the degree of correlation amongst different variables (Table III). Significant correlations were noted amongst the hard (dental) and soft tissue variables, with the upper and lower lips correlating not only with each other, but also with other variables such as SNA, SNB, ANB, SN-MP, I.I.A, UI-SN, IMPA, UI-SP, LI-SP, SS-E line, LS-E line, Li-E line, SI-E line, UL-SP, LL-SP, NLA, MLA, ULT, LLT, and St-St.

Table I: Pre-treatment to post-treatment changes in the extraction and non-extraction groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Extraction (n=17)</th>
<th>Non-extraction (n=17)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Tx</td>
<td>Post-Tx</td>
<td>Pre-Tx</td>
</tr>
<tr>
<td>SNA</td>
<td>82.29</td>
<td>82.24</td>
<td>82.24</td>
</tr>
<tr>
<td>SNB</td>
<td>79.29</td>
<td>78.94</td>
<td>78.94</td>
</tr>
<tr>
<td>ANB</td>
<td>5.00</td>
<td>3.29</td>
<td>3.29</td>
</tr>
<tr>
<td>SN-MP</td>
<td>33.76</td>
<td>34.00</td>
<td>34.00</td>
</tr>
<tr>
<td>I.I.A</td>
<td>118.78</td>
<td>122.59</td>
<td>122.59</td>
</tr>
<tr>
<td>UI-SN</td>
<td>112.47</td>
<td>107.71</td>
<td>107.71</td>
</tr>
<tr>
<td>IMPA</td>
<td>97.18</td>
<td>96.24</td>
<td>96.24</td>
</tr>
<tr>
<td>UI-SP</td>
<td>77.65</td>
<td>72.53</td>
<td>72.53</td>
</tr>
<tr>
<td>LI-SP</td>
<td>73.29</td>
<td>70.41</td>
<td>70.41</td>
</tr>
<tr>
<td>SS-E line</td>
<td>-8.24</td>
<td>4.64</td>
<td>-9.65</td>
</tr>
<tr>
<td>LS-E line</td>
<td>-2.00</td>
<td>2.47</td>
<td>-4.29</td>
</tr>
<tr>
<td>LI-E line</td>
<td>1.00</td>
<td>-1.35</td>
<td>1.90</td>
</tr>
<tr>
<td>SI-E line</td>
<td>-5.59</td>
<td>2.42</td>
<td>-6.53</td>
</tr>
<tr>
<td>UL-SP</td>
<td>88.65</td>
<td>85.35</td>
<td>85.35</td>
</tr>
<tr>
<td>LL-SP</td>
<td>84.82</td>
<td>82.59</td>
<td>82.59</td>
</tr>
</tbody>
</table>

Key for abbreviations: IIA = Interincisal angle; St-St = Stomion to stomion; UI-SP = Upper incisor to sella-perpendicular; LI-SP = Lower incisor to sella-perpendicular; SS-E line = Sulcus superior to E-line; LS-E line = Labrale superior to E-line; SI-E line = Sulcus inferior to E-line; UL-SP = Upper lip to sella-perpendicular; LL-SP = Lower lip to sella-perpendicular; NLA = Nasolabial angle; MLA = Mentolabial angle; ULT = Upper lip thickness; LLT = Lower lip thickness.

Table II: Post-treatment appraisal of extraction and non-extraction groups and the net differences amongst the two groups at end the of treatment.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Extraction (n=17)</th>
<th>Non-extraction (n=17)</th>
<th>Net difference after treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Tx</td>
<td>Post-Tx</td>
<td>Pre-Tx</td>
</tr>
<tr>
<td>SNA</td>
<td>82.24</td>
<td>81.24</td>
<td>2.06</td>
</tr>
<tr>
<td>SNB</td>
<td>78.94</td>
<td>78.41</td>
<td>0.35</td>
</tr>
<tr>
<td>ANB</td>
<td>3.29</td>
<td>1.67</td>
<td>1.70</td>
</tr>
<tr>
<td>SN-MP</td>
<td>34.00</td>
<td>33.18</td>
<td>-0.24</td>
</tr>
<tr>
<td>I.I.A</td>
<td>118.78</td>
<td>114.47</td>
<td>4.71</td>
</tr>
<tr>
<td>UI-SN</td>
<td>107.71</td>
<td>111.00</td>
<td>4.76</td>
</tr>
<tr>
<td>IMPA</td>
<td>96.24</td>
<td>102.00</td>
<td>0.94</td>
</tr>
<tr>
<td>UI-SP</td>
<td>72.53</td>
<td>73.71</td>
<td>5.11</td>
</tr>
<tr>
<td>LI-SP</td>
<td>70.41</td>
<td>70.71</td>
<td>2.88</td>
</tr>
<tr>
<td>SS-E line</td>
<td>-9.65</td>
<td>-11.18</td>
<td>1.41</td>
</tr>
<tr>
<td>LS-E line</td>
<td>-4.29</td>
<td>-2.41</td>
<td>2.29</td>
</tr>
<tr>
<td>SI-E line</td>
<td>-1.35</td>
<td>-0.41</td>
<td>2.35</td>
</tr>
<tr>
<td>UL-SP</td>
<td>85.35</td>
<td>86.47</td>
<td>0.29</td>
</tr>
<tr>
<td>LL-SP</td>
<td>82.59</td>
<td>83.32</td>
<td>0.23</td>
</tr>
<tr>
<td>NLA</td>
<td>112.12</td>
<td>107.12</td>
<td>9.43</td>
</tr>
<tr>
<td>MLA</td>
<td>122.41</td>
<td>111.82</td>
<td>-0.67</td>
</tr>
<tr>
<td>ULT</td>
<td>13.35</td>
<td>13.65</td>
<td>-0.82</td>
</tr>
<tr>
<td>LTT</td>
<td>15.71</td>
<td>17.76</td>
<td>1.58</td>
</tr>
<tr>
<td>St-St</td>
<td>0.06</td>
<td>0.65</td>
<td>2.70</td>
</tr>
</tbody>
</table>

Key for abbreviations: IIA = Interincisal angle; St-St = Stomion to stomion; UI-SP = Upper incisor to sella-perpendicular; LL-SP = Lower incisor to sella-perpendicular; SS-E line = Sulcus superior to E-line; LS-E line = Labrale superior to E-line; SI-E line = Sulcus inferior to E-line; UL-SP = Upper lip to sella-perpendicular; LL-SP = Lower lip to sella-perpendicular; NLA = Nasolabial angle; MLA = Mentolabial angle; ULT = Upper lip thickness; LLT = Lower lip thickness.
other (r=0.757), but also with changes occurring in both upper and lower incisor positions. The nasolabial angle seemed to be significantly affected by upper incisor (r=0.643) and lip changes (r=0.588).

DISCUSSION

Attaining (or maintaining) general harmony and balance among the various facial features by predicting the individual response to treatment becomes part of an orthodontist's responsibility.

Comparison of the two study groups at the start of treatment reveals that although there were no significant morphological differences, the extraction group displayed greater mandibular crowding and a more protrusive lower lip relative to Rickett's E-line. Erdinc et al. discerned a similar lower lip pattern in their study sample; however, as did Bravo et al. they also found a number of differences at the dental level, including a significantly reduced interincisal angle.

Several studies have attempted to determine the effects of extraction versus non-extraction treatment on the soft tissue profile, owing to the opposite mechanics undertaken in both treatment approaches. Kokadereli concluded that the main soft tissue differences between the groups were retruded upper and lower lips in the extraction sample. Similarly in this study, the extraction group showed significant retraction of the upper and lower lips in response to incisor retraction, which was also responsible for a significant reduction in the SNA angle (mean 2°) due to retraction of point A. The non-extraction group finished with a mild increase in the procumbency of the lower lip in response to increases in IMPA and interincisal angle, pointing towards the displacement of mandibular incisors in a direction opposite to that seen in extraction cases, with the intention of gaining space in the arch. These obser-vations agree with those reported by Erdinc et al. and Bravo et al.

Post-treatment comparison of the net differences taking place with treatment between both groups with reference to each other showed that significant changes in the soft tissue profile were mostly confined to the group treated with premolar extractions. Various researchers using different reference planes have also observed similar changes in extraction patients, notably reduction in angle SNA as well as in lip procumbency, resulting in improvement of the profile.

Although extraction mechanotherapy has often been associated with flattening of the facial profile, the results achieved in this study showed no significant difference in lip position of premolar extraction patients when compared with those cases treated without extractions, signifying that both treatment modalities finished within the same soft tissue parameters. Similar observations have been reported by different authors including Young and Smith, who suggest that extractions have no unfavourable effect on the face. Tadic and Woods agreed, further elaborating that the teeth does not have a detrimental effect on the face.

Tadic and Woods agreed, further elaborating that the degree to which changes in lip positions may be affected by anteroposterior tooth movements depend on the treatment mechanics used, the various extraction decisions, the final angulations of the upper and lower incisors, the pretreatment lip thickness, and the underlying vertical and anteroposterior facial patterns.
Although numerous studies have concentrated on the hard-to-soft tissue relationship, the nature of correlation between the two, still seems indeterminate. Comparison between the two shows that; the upper lip is more variable in its response than the lower lip to differences in incisor retraction, with the lower lip showing high correlations with upper and lower incisor retraction. Research concludes changes in lower lip in response to orthodontic tooth movement as more predictable than those of the upper lip, as the complex functional musculoskeletal anatomy of the nasomaxillary complex contributes to the variability of upper lip response to extraction therapy. Caplan and Shivapuja’s findings with regards to soft tissue correlation, support the present where the high correlation between the upper and lower lips suggests that the soft tissue structures of the lips tend to support each other.

Although prediction of soft tissue response to orthodontic tooth movement is complex, and would require the application of further tests (multiple regression), the significant changes occurring with orthodontic treatment verify the fact that such relationships in fact do exist, and advanced research could lead to greater understanding and even better treatment results.

CONCLUSION

The premolar extraction group showed a significant reduction in lip procumbency while the non-extraction group showed mild increase in IMPA and lower lip procumbency at the end of active treatment. Extraction and non-extraction groups finished within the same soft tissue parameters, signifying that premolar extraction does not necessarily cause undesirable changes in the soft tissue profile. Significant correlations existed between the hard (dental) and soft tissue variables, indicating that advanced studies could predict the nature of response of the soft tissue profile to orthodontic tooth movement.

Annexure 1

1A. Cephalometric points:
- Nasion (N): Most anterior point of frontonasal suture in median plane.
- Sella (S): Mid-point of concavity of sella turcica.
- Pronasale (Pr): Most prominent point on the tip of the nose.
- Subnasale (Sn): Point at junction of columella and upper lip.
- Sulcus superior (Ss): Point of greatest concavity between Ls and Sn.
- Labrale superior (Ls): Most anterior point on convexity of upper lip.
- Labrale inferior (Li): Most anterior point on convexity of lower lip.
- Sulcus inferior (Si): Point of greatest concavity between Li and Pog'.
- Soft-tissue pogonion (Pog'): Most anterior point on soft-tissue chin.
- Point A (A): Point at deepest midline concavity on maxilla between anterior nasal spine and prosthion.
- Point B (B): Point at deepest midline concavity on mandibular symphysis between infradentale and pogonion.

1B. Cephalometric lines:
- Horizontal reference line (HRL): Horizontal line constructed 7° inferior to sella-nasion plane at the level of the Frankfort horizontal plane.
- Sella-perpendicular (SP): Perpendicular dropped through S from the HRL.
- E-line: Ricketts’ Esthetic line extending between Pr and Pog’.
- Ss to E-line: Linear distance from sulcus superior to the E-line.
- Ls to E-line: Linear distance from labrale superior to the E-line.
- Li to E-line: Linear distance from labrale inferior to the E-line.
- Si to E-line: Linear distance from sulcus inferior to the E-line.
- Upper lip vermilion thickness (UVT): Linear distance from most facial point of maxillary incisor to the vermilion border of upper lip.
- Lower lip vermilion thickness (LVT): Linear distance from most facial point of mandibular incisor to Li.
- Upper lip to SP (UL-SP): Linear distance from Ls to SP.
- Lower lip to SP (LL-SP): Linear distance from Li to SP.

![Figure 1](image_url)
Upper incisor to SP (UI-SP): Linear distance from the most proclined maxillary incisal tip to SP.
Lower incisor to SP (LI-SP): Linear distance from the most proclined mandibular incisal tip to SP.
Stomion-stomion (St-St): Interlabial gap.
Axial inclination of maxillary incisor.
Axial inclination of mandibular incisor.

1C. Cephalometric angles:
SNA: Sella to nasion to A point angle.
SNB: Sella to nasion to B point angle.
ANB: Sagittal skeletal discrepancy angle, A to Na to B.
SN-MP: Mandibular plane (Me-Go) to SN plane angle.
UI-SN: Maxillary central incisor to SN plane angle.
IMPA: Mandibular incisor to mandibular plane angle.
Interincisal angle (IIA): Formed by intersection of maxillary and mandibular incisor axial inclinations.
Nasolabial angle (NLA): Formed by the intersection of a line originating at Sn, tangent to the lower border of the nose, and a line from Sn to Ls.
Mentolabial angle (MLA): Formed by intersection of line traced between Li and Si, and line traced between Si and Pog'.

REFERENCES